

Search for eV Sterile Neutrinos The Stereo Experiment

Stefan Schoppmann for the Stereo collaboration

Outline

- Experimental Setup
- Calibration and Energy Reconstruction
- Signal and Backgrounds
- Summary/Outlook

Experiment Site

Detector/Measurement Idea

- Target segmented in 6 cells
 - → 1800 l of Gd-loaded liquid scintillator
- Surrounding outer crown to capture gammas
- 48 PMTs of 8 inch diameter
- Layers of acrylic and oil as buffer
- Water Cherenkov veto on top
- About 90 tons of shielding material
 - \rightarrow lead, polyethylene, B_4C , iron

Detector/Measurement Idea

Buffers \rightarrow 1800 l of Gd-loaded liquid Veto and scintillator **PMTs** Target Surrounding outer crown to (6 cells) capture gammas 48 PMTs of 8 inch diameter **Outer** Layers of acrylic and oil as buffer Crown Water Cherenkov veto on top • About 90 tons of shielding material \rightarrow lead, polyethylene, $B_{a}C$, iron 10 Visible shape Spectra (arbitrary normalization) osci the clesest cell effects in energy n the fuil hest cell events Δm_{new}^2 (eV²) accessible Δm^2 0.95 parameter new space observed/expected Ð \sim 0.90 1 2 3 5 6 visible energy (MeV) · – I Reactor Anomaly contour @ 95 % CL 10-1 S Reactor Anomaly contour @ 99 % CL Best Fit sensitivity 0.85 Exp. contour @ 95 % - Shape Exp. contour @ 95 % - Norm+Shape after 1 year visible energy (MeV) 10^{-1} $sin^2(2\theta_{new})$

• Target segmented in 6 cells

Experimental Signal

Calibration ^{and} Energy Reconstruction

Homogeneity

Detection Efficiency

Detection Efficiency

Energy Reconstruction

Energy Reconstruction

Search for eV Sterile Neutrinos - The Stereo Experiment

Energy Reconstruction

Energy response function

- → quenching curve
- → gamma sources
- → single gamma lines
- ⇒ expected behaviour of liquid scintillator ionisation quenching (Birk's law)

Energy stability from n-H captures of spallation neutrons → in good agreement with stable behaviour

Backgrounds

© NSF/J.Yang

Muon induced

Examples:

- fast neutrons
- stopping muons

Counter measures:

- water pool
- active veto
- pulse shape discr.
- PMT cut

Reactor induced

Examples:

- neutrons
- γ-radiation via neutron capture

Counter measures:

- shielding
- pulse shape discr.
- event topology

© wikipedia.org and cloudylabs.fr

Radioactive decays

Examples:

- thorium/uranium
- radon/argon
- potassium

Counter measures:

- shielding
- event topology
- precise measurement

Backgrounds

© NSF/J.Yang

Muon induced

Examples:

- fast neutrons
- stopping muons

Counter measures:

- water pool
- active veto
- pulse shape discr.
- PMT cut

Reactor induced

© wikipedia.org and cloudylabs.fr

Radioactive decays

Examples:

- thorium/uranium
- radon/argon
- potassium

Counter measures:

- shielding
- event topology
- precise measurement

Neutrino Candidate Search

(2005)

, PhD thesis (Lyon 1

G. Mention, Université L

Signal selection (proposal cuts):			
	Cut 1	Cut 2	Cut 3
Eprompt	$1.5 \text{ MeV} < \text{E}_{tot} < 8 \text{ MeV}$	$E_{_{GC}}$ < 1.1 MeV	2.5 σ PSD
E _{delayed}	$5 \text{ MeV} < \text{E}_{tot} < 10 \text{ MeV}$	E _{TG} > 1 MeV	
T _{delay}	< 70 μs		
L after much vete			

atter muon veto + + additional cleaning cuts

IBD seen by detector:

Neutrino Candidate Rates

Neutrino candidate rate by comparing rates at reactor-on (75 days) vs. reactor-off (28 days):

~300/day (with current proposal cuts)

Neutrino Candidate Rates

Neutrino candidate rate by comparing rates at reactor-on (75 days) vs. reactor-off (28 days):

~300/day (with current proposal cuts)

Comparison reactor-on vs. reactor-off via PSD → additional contribution only in signal region → shielding against reactor-induced background sufficient

Search for eV Sterile Neutrinos - The Stereo Experiment

Summary/Outlook

Summary

- \rightarrow first data taking phase completed (75 days reactor on + 28 days reactor off)
- → detector shows well-understood/stable response
- \rightarrow first signal and background selections yield promising results

Outlook

- \rightarrow cut optimisation
- → finalisation of energy reconstruction → for spectral shape oscillation analysis
- → studies of backgrounds + systematics
- → re-installation of detector (currently maintenance at reactor site)
- → further data taking → 2017: + 60 days reactor on → 2018: + ~150 days reactor on

The Stereo Collaboration

Search for eV Sterile Neutrinos - The Stereo Experiment

The Stereo Timeline

Shielding

Shielding types:

- 6 tons of borated polyethylene
- 65 tons of lead
- B₄C sheets all around the detector
- Magnetic shielding
 (soft iron + μ-metal)
- Casemate reinforcements (lead + borated polyethylene)

Search for eV Sterile Neutrinos - The Stereo Experiment

