Astroparticle Physics in Hyper-Kamiokande

Takatomi Yano

Kobe University For Hyper-Kamiokande Proto Collaboration

Topics in Astroparticle and Underground Physics 2017

Sudbury, Canada 26 July 2017

Hyper-Kamiokande Project

Design	Hyper-Kamiokande	Super-Kamiokande			
Shape of tank(s)	2 Cylindrical tanks	1 Cylinder			
No. of PMTs (ID/OD)	40,000 / 6,700 (per tank)	11,129 / 1,885			
Photocathode coverage	40% (×2 efficient p.e. detection)	40%			
Total / Fiducial V.	0.26 Mt / <mark>0.19Mt</mark> (per tank)	50 kt / <mark>22.5 kt</mark>			

New HK detector consists of two SK-like cylinders.

- Better energy and vertex resolutions with higher photocoverage and improved photo sensors (x2 p.e. detectable).
- 70% fiducial volume comparing to LOI design.
- Easy to build and install photo sensors.
- Deeper tank with high pressure tolerance PMT.
- At 2026, we will start the observation with 1st tank. The 2nd tank will be ready 6 years later. One candidate site is Korea³.

Astrophysical Neutrino at HK

Mpc ~

Solar neutrino

- Burning processes, modeling of the Sun
- Property of neutrino

Supernova ν

- SN explosion mechanism
- SN monitor
- Nucleosynthe sis

NASA, Hubble 2009

SN relic ν

- SN mechanism
- Star formation history
- Extraordinary SNe

and DM annihilation, GRB $\nu\cdots$

菮 Solar neutrino

pp-chain & ν Energy specturm

- The Sun is burning with nuclear fusion reactions, i.e. pp-chain and CNO-cycle, emitting neutrinos.
- Only neutrinos can bring out the information of "today's" status of solar center.
- With Hyper-K, a large statistics is expected : $70 \nu ev./day/tank$, $E_{\nu} > 6.5 MeV$ (18 ν ev./day in SK-IV)

Solar neutrino observation

In water detector, we observe the neutrinos with the Cherenkov
light of the scattered electron.

 $\nu + e^{-} \rightarrow \nu + e^{-}$

- Sensitivity to **direction** and **energy**.
- Real-time measurement.
- Importance of solar nu meas. in particle physics and astrophysics
 - Precision measurement, Δm_{21}
 - Day/Night asymmetry
 - Solar nu spectrum up-turn
 - Discovery of Hep neutrino
 - Stability/fluctuation of solar ν

Solar Day/Night asymmetry

- Nonzero D/N asymmetry of solar ν caused by terrestrial matter effect is indicated by SK. [PRL 1212, 091805(2014)]
- The D/N asymmetry leads smaller Δm²₂₁ value in solar neutrino analysis, comparing to reactor neutrino analysis.
- With Hyper-K statistics, we can separate solar best Δm_{21}^2 and KamLAND best above 4σ .
 - 10 years with 1 tank, 0.3% sys. Err.
- → CPT violation test, difference between $P_{\nu e \rightarrow \nu e}$ and $P_{\overline{\nu e} \rightarrow \overline{\nu e}}$.
- → Precise Δm_{21}^2 also contributes to CPV test in HK long-baseline.

Other solar ν topics

Hep process neutrino

- Undiscovered solar neutrino, with small branching ratio.
- With Hyper-K 10 years, there is chance to discover.
- \rightarrow To test the solar models.
- 6.0 ev. + BG 0.5 ev./10y/tank

Energy spectrum up-turn

- To confirm the solar neutrino oscillation, or to see new physics beyond the SM.
 - → Non-standard interaction, sterile neutrinos …
- Separable w/ up-turn from w/o up-trun with ~3(5) σ.
 - 4.5 (3.5) MeV threshold, 10y, 1 tank

Supernova Neutrino

Core collapse supernova emits all kinds of neutrinos.

- 11 neutrino events by Kamiokande from SN1987A at 50kpc (LMC).
- 50 ~ 80k events/tank are expected in HK from SN at 10kpc (galactic center).

Physics Motivation

- Core collapse SN physics
 - Explosion mechanism
 - Proto-neutron star formation
 - Black hole formation
- Neutrino Physics
- Multi-messenger analysis
 - With gravitational wave, gamma-ray, X-ray, telescope…

Features

2.5

CCSN rate

05

15 CCSNe

11 CCSNe

B-band

JOROT-UV

<mark>ROT-UV</mark> NOROT-Hα

ROT-Ha

- Precise SN neutrino time profile
- Energy spectrum measurement
 - Investigation of the SN mechanism (SASI/Rotation/Convection)
- Proving dim supernova/BH formation

Horiuchi et al. AstroP.J769,113 (2013)

8

Distance D [Mpc]

6

10

15 observed (with SN 2008S-like)

cosmic SFR extrapolation

B-band

NOROT-UV

ROT-UV NOROT-Hα ROT-Hα

Dim SN

15

10

CCSNe in galaxy sample

11 observed (without SN 2008S-like)

14 Billion

years

from

Bigbang

18 degrees

3 degrees K

1 Billion years from Bigbang

Supernova Relic Neutrino

- Supernova Relic Neutrino (SRN) is diffused neutrinos coming from all past supernovae.
- Not discovered but promising source of extra-galactic neutrino.

SRN with HK

Physics of SRN

- Test of star formation rate
 - Factor ~2 discrepancy between rates of formations and SNe.
- Energy spectrum of supernova burst neutrinos
 - Temperature inside the SN
- Extraordinary SN
 - BH formation, dim supernova

SRN with Hyper-K

- SRN can be observed by HK in 10y with ~70±17 (~98±20) events with 1 (1st+2nd) tank(s).
- It is 4 (4.8) σ from nonzero
- We will go beyond the discovery and aim to measurement of SRN.

Energy (MeV)

Summary

- Hyper-K project is a next generation large water Cherenkov detector.
 - Design Report 2016 is ready. The update is being prepared.
 - 1st HK detector will be ready at 2026. Now we're going to request the budget.
- Astrophysical neutrino measurements is one of the features of Hyper-Kamiokande.
 - Solar neutrino
 - Hep neutrino, seasonal variation, up-turn etc…
 - Supernova neutrino
 - Energy and time spectrum measurement, SN alarming etc..
 - Supernova Relic Neutrino
 - Supernova and SFR models, extraordinary SN₁₃

Hyper-Kamiokande Proto-Collaboration

16 institutes from Japan

- Kamioka Observatory, ICRR, University of Tokyo, Japan
- Kavli IPMU, University of Tokyo, Japan
- KEK, Japan
- Kobe University, Japan
- Kyoto University, Japan
- Miyagi University of Education, Japan
- Nagoya University, Japan
- Okayama University, Japan
- Osaka City University, Japan
- Tohoku University, Japan
- Tokyo Institute of Technology, Japan
- University of Tokyo, Japan

- 16 Institutes from **USA**
- 11 Institutes from **UK**
- 6 Institutes from **Canada**
- 6 Institutes from Korea
- 5 Institutes from **Italy**
- 4 Institutes from **Poland**
- 2 Institutes from France
- 2 Institutes from **Brazil**
- 1 Institute from Russia
- 1 Institute from Switzerland
 - 1 Institute from Ecuador
 - 1 Institute from Armenia
 - 1 Institute from Spain

etc.

- 298 members
 - 73 institutes

WIMP search

90% CL UPPER LIMIT

Solar neutrino upturn

Maltoni et al. http://arxiv.org/pdf/1507.05287.pdf

Solar neutrino fluxes of models.

J.N. Bahcall and A.M. Serenelli, Astro. Phys. J. 621, 85 (2005)

Table 2: Predicted solar neutrino fluxes from seven solar models. The table presents the predicted fluxes, in units of $10^{10}(pp)$, $10^{9}(^{7}\text{Be})$, $10^{8}(pep, ^{13}\text{N}, ^{15}\text{O})$, $10^{6}(^{8}\text{B}, ^{17}\text{F})$, and $10^{3}(\text{hep})$ $\text{cm}^{-2}\text{s}^{-1}$ for the same solar models whose characteristics are summarized in Table 1.

Model	pp	pep	hep	⁷ Be	⁸ B	$^{13}\mathrm{N}$	$^{15}\mathrm{O}$	$^{17}\mathrm{F}$
BP04(Yale)	5.94	1.40	7.88	4.86	5.79	5.71	5.03	5.91
BP04(Garching)	5.94	1.41	7.88	4.84	5.74	5.70	4.98	5.87
BS04	5.94	1.40	7.86	4.88	5.87	5.62	4.90	6.01
$BS05(^{14}N)$	5.99	1.42	7.91	4.89	5.83	3.11	2.38	5.97
BS05(OP)	5.99	1.42	7.93	4.84	5.69	3.07	2.33	5.84
BS05(AGS,OP)	6.06	1.45	8.25	4.34	4.51	2.01	1.45	3.25
BS05(AGS,OPAL)	6.05	1.45	8.23	4.38	4.59	2.03	1.47	3.31

Neutrino, Messenger from Nature

Source of Neutrinos

Physics of Neutrinos

- Neutrino Mixing
 - Mixing angles, Mass differences
- Difference between $\nu \& \overline{\nu}$
 - CPV, CPTV (Leptogenesis)
- Tiny neutrino masses
 - Mass hierarchy (See-saw mechanism)
- Astrophysics
 - Prove of supernova, Sun, Earth and our universe.
- ν 's role in nature
 - ν heating in supernova