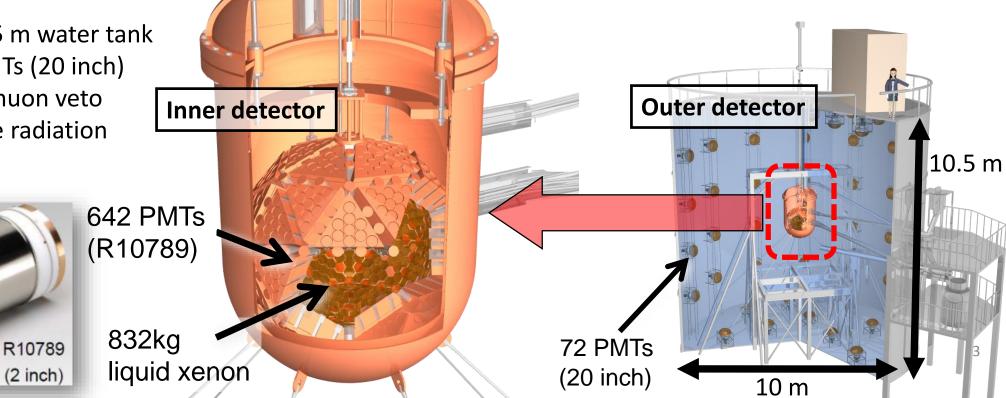
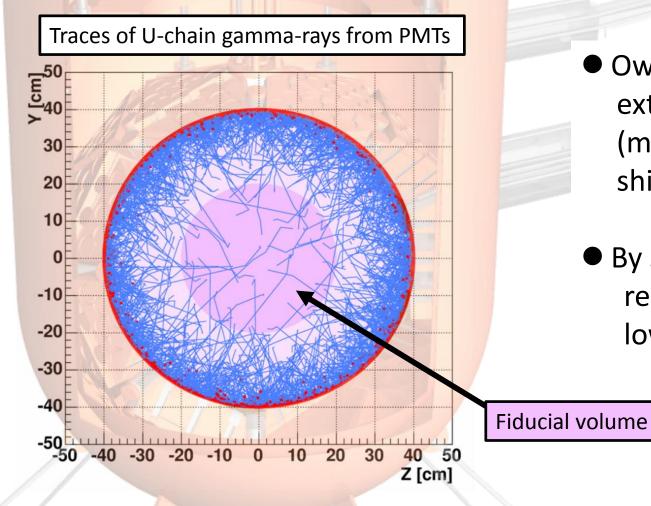

WIMP search from XMASS-I fiducial volume data with background prediction

15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017) Jul. 24–28, 2017, Sudbury, ON, Canada

> 26th of Jul. 2017 (14:45–15:00) A. Takeda for the XMASS Collaboration


XMASS-I detector

• Inner detector


- Single phase liquid xenon detector. (832 kg xenon for sensitive region)
- 642 low background PMTs. (2 inch, HAMAMATSU R10789) \rightarrow each PMT signal is recorded by 10-bit 1GS/s waveform digitizers.
- High light yield: ~15 PE/keV.

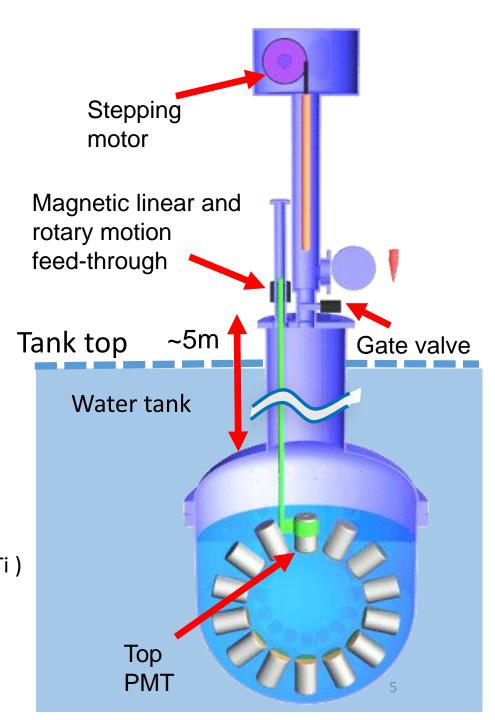
• Outer detector

• 10 m x 10.5 m water tank with 72 PMTs (20 inch) for active muon veto and passive radiation shield.

Self-shielding of γ -ray background

- Owing to high atomic number (Z=54), external gamma-ray background (mainly coming from PMTs) can be shielded by liquid xenon itself.
- By selecting events occurred in the restricted inner volume (fiducial volume) low background can be achieved.

Detector calibration


- Various RI sources can be inserted inside the sensitive volume w/o interrupting detector operation.
- Used for light yield monitoring, optical parameter tuning, energy and timing calibration etc.

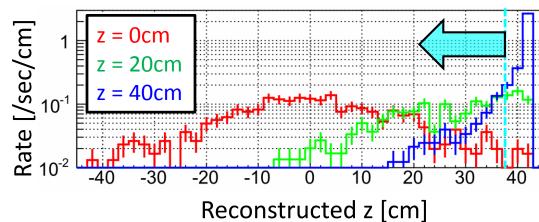
RI	Energy [keV]	diameter [mm]	Geometry
(1) ⁵⁵ Fe	1.65(*1), 5.9	10	2pi source
(2) ¹⁰⁹ Cd	8, 22, 25, 88	5	2pi source
(3) ²⁴¹ Am	17.8, 59.5	0.17	2pi/4pi source
(4) ⁵⁷ Co	59.3(*2), 122	0.21	4pi source
(5) ¹³⁷ Cs	662	5	cylindrical

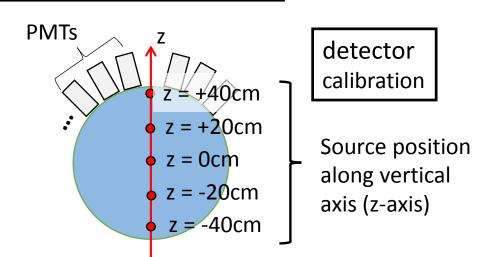
(*1) 4.2 keV (averaged) L-shell X-ray escape from 5.9 keV K-shell X-ray.(*2) Tungsten K-shell X-ray used for detector housing.

Active region is concentrated on 1.8 mm edge region

Vertex reconstruction (based on timing, R(T))

 $P(\tau)$: probability density function

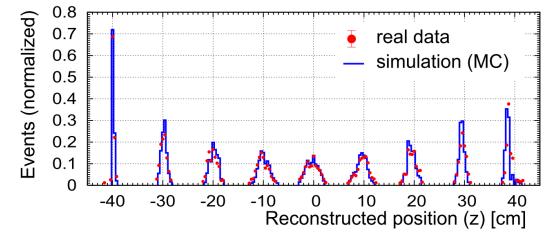

: group velocity in Lxe (110mm/ns)

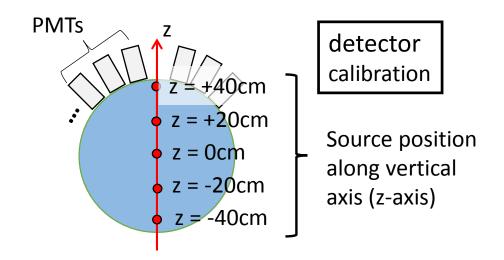

x_i, t_i : PMT position and hit time

- Using FADC hit timing of each PMT.
- Timing constant for 2-10 keV events: 25 ± 2 ns.
- Position reconstruction is done by using likelihood method from probability density function for each PMT.

$$L(\vec{X},T) = \prod_{i=1}^{Nhits} P\left(t_i - \frac{\left|\vec{x}_i - \vec{X}\right|}{v_g} - T\right)$$

²⁴¹Am calibration data (5–10 keV)


→ Surface events > 38 cm are effectively removed from this distribution. R(T) < 38 cm selection is used for event reduction.</p>


Vertex reconstruction (based on photo electron, R(PE))

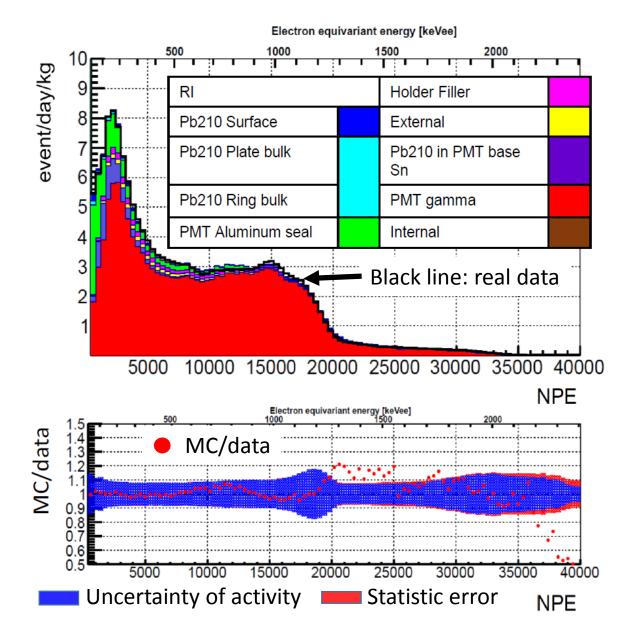
- Position reconstruction
 - (1) Making acceptance map: Many grid points are defined inside whole detector volume including detector surface. Events are generated at each grid point and photo-electrons (pe) expected in each PMT are calculated by our MC.
 - (2) From measured pe and scaled acceptance map (μ) in (1), position is calculated where following likelihood is maximum.

$$\log(L) = -\sum_{PMT} \log\left(\frac{\exp(-\mu)\mu^{pe}}{\Gamma(pe+1)}\right) \qquad \begin{array}{l} \Gamma(x): \text{ Gamma function} \\ (\Gamma(n) = (n-1)!, n>0) \end{array}$$

Reconstructed position distribution of ⁵⁷Co events (122 keV)

Evaluation of RI activities in XMASS-I (1/2)

- Based on RI screening for detector materials mainly with HPGe detector.
- RI activities are evaluated by spectrum fitting for > 400 pe (~30 keV) between data and MC with constraints from screening results.

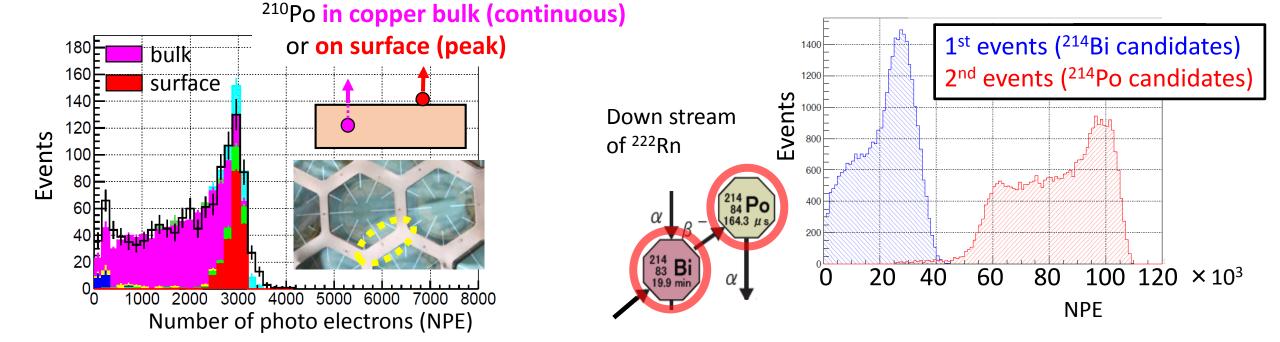


PMT aluminum seal

	Bq
²³⁸ U– ²³⁰ Th	1.5 ± 0.4
²¹⁰ Pb	2.85±1.15
²³² Th	0.096±0.018
²³⁵ U– ²⁰⁷ Pb	~1.5 x 4.5%

- ex. RI screening results for PMT with HPGe detector.
 - PMT + base

whole measurement				
	mBq/PMT			
²³² Th	1.80 ± 0.31			
²³⁸ U	2.26±0.28			
²¹⁰ Pb	200±100			
⁶⁰ Co	2.92 ± 0.16			
⁴⁰ K	9.10±2.15			

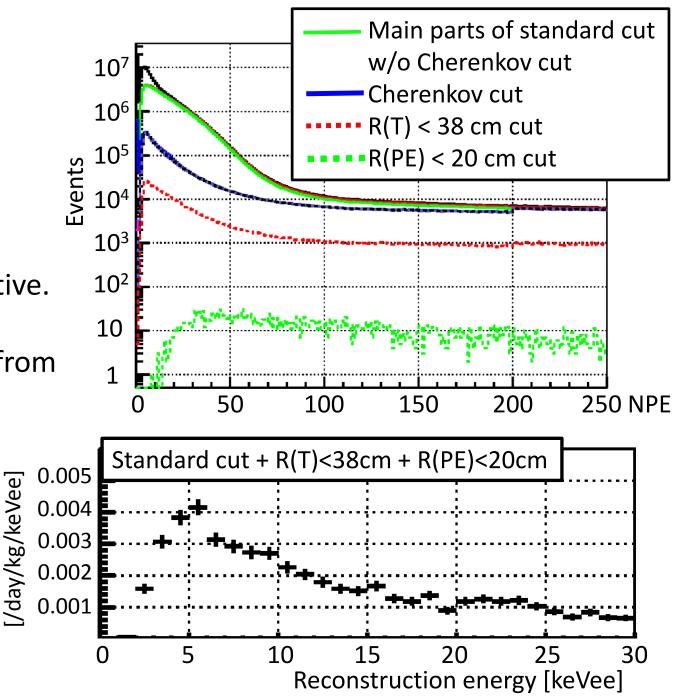

Evaluation of RI activities in XMASS-I (2/2)

²¹⁰Pb in copper surface and bulk

- α events selection from scintillation decay time.
- ²¹⁰Pb in copper surface/bulk were estimated from shape of energy spectrum caused by ²¹⁰Po α decay.
- ²¹⁰Pb in the bulk of OFHC copper was also measured independently by a low background α-particle counter. (XIA Ultra-Lo-1800)

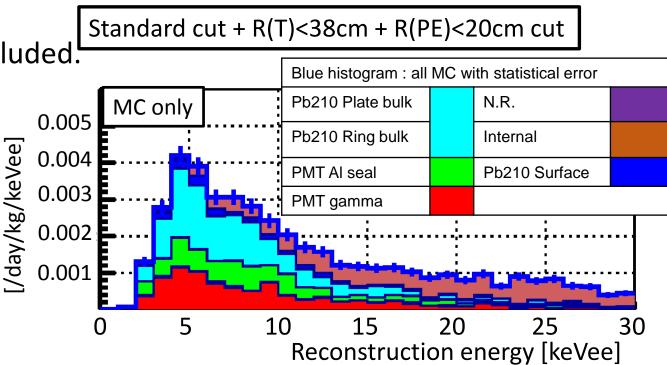
• RI in liquid xenon

- Coincidence analysis was used.
 - ²²²Rn: ²¹⁴Bi ²¹⁴Po (164 us)
 - ⁸⁵ Kr: β–γ (1.015 us, 0.343%)
- ¹⁴C and ³⁹Ar were estimated from spectrum fitting.



Data reduction

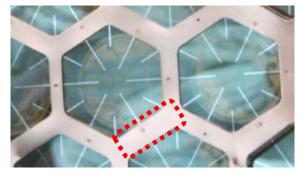
Live time: 705.88 days
 2013/Nov. /20 – 2016/Mar./29


• Standard cut:

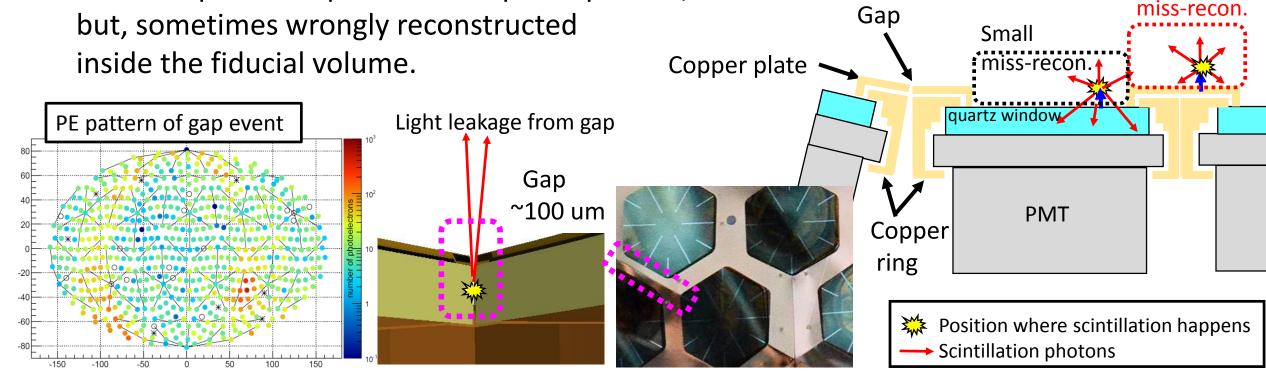
- Reduction of Cherenkov event is effective. Main origin of Cherenkov events is β-ray in PMT quartz window emitted from ⁴⁰K in PMT photo-cathode.
- R(T) < 38 cm and R(PE) < 20 cm cuts give another O(10⁻³) reduction.
- Event rate after applying all cuts: ~4 × 10⁻³ /day/kg/keVee @5-5.5 keVee (signal efficiency: ~30%)

Background prediction with MC

- XMASS MC based on Geant4.
 - Detail detector geometry and responses of PMT and DAQ were included.
 - Optical parameters of LXe were traced with our periodical calibration (⁵⁷Co and ⁶⁰Co).
 - RI activities for each material were implanted.
 - Same live time as that of data.
 - Same reduction as that for data was applied.



Main BG origin is not internal but detector surface events (miss-reconstructed events).


Miss-reconstructed events

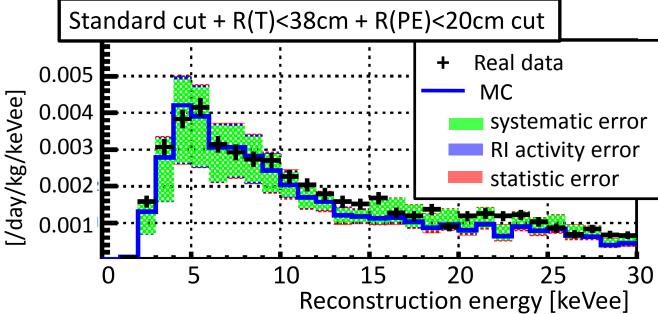
- Events occurring on surface of copper plate are wrongly reconstructed to inside of the fiducial volume with some probabilities because closest PMT has small solid angle for these events.
- Light leakage from a gap around boundary between plate and plate makes special pattern, but, sometimes wrongly reconstructed inside the fiducial volume.

Large

Systematic error evaluation

All the possible systematic errors were evaluated

- **Related to surface condition**: it mainly affects to miss-reconstruction rate.
 - (1) Geometry of gap between plates coming from installation accuracy of plates.
 - (2) Roughness of ring surface inside the gap.
 - (3) Reflection of plate surface.
 - (4) Floating of plate coming from installation accuracy of each plate.
- (5) Geometry and property of aluminum seal
- (6) Related to reconstruction: grid dependency and rate of miss-reconstruction.
- (7,8) Uncertainty for scintillation decay time and response of PMT.
- (9) Optical parameters of LXe.
- (10) Effect of dead PMTs (10 dead PMTs exist)
- (11) for ²⁰⁶Pb recoil from ²¹⁰Po α decay on copper surface.


Contents	Systematic error	
	2-15 keVee	15-30 keVee
(1) Plate gap geometry	+6.2/-22.8%	+1.9/-6.9%
(2) Ring roughness	+6.6/-7.0%	+2.0/-2.1%
(3) Cu ref dependence	+5.2/-0.0%	+2.5/-0.0%
(4) Plate floating	+0.0/-4.6%	+0.0/-1.4%
(5) Al seal dependence	+0.7/-0.7%	+0.0/-0.0%
(6) Reconstruction	+3.0/-6.2%	+0.0/-0.0%
(7) Timing (decay time, TTS)	+4.6/-2.9%	+0.4/-5.3%
(8) Timing (response in detector surface)	+0.0/-8.0%	+0.0/-0.0%
(9) Absorption & scattering	+0.7/-6.7%	+1.5/-1.1%
(10) Dead tube origin	+10.3/-0.0%	+45.2/-0.0%
(11) N.R.	+0.7/-0.7%	+0.0/-0.0%

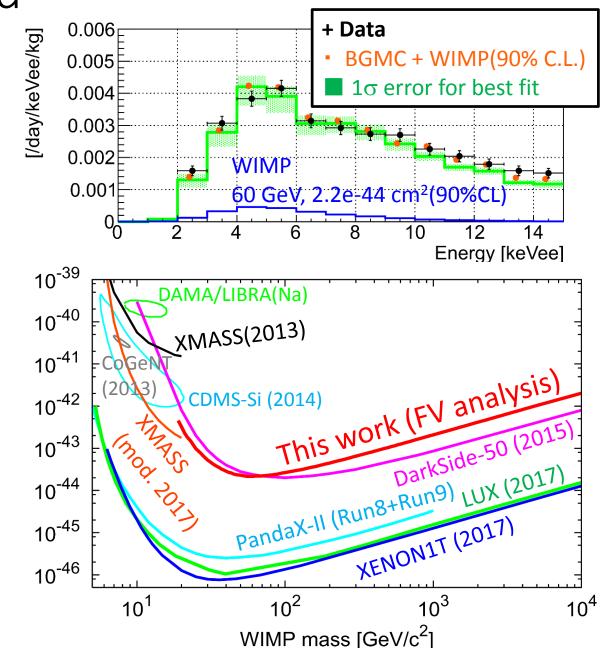
Systematic error evaluation

All the possible systematic errors were evaluated

- **Related to surface condition**: it mainly affects to miss-reconstruction rate.
 - (1) Geometry of gap between plates coming from installation accuracy of plates.
 - (2) Roughness of ring surface inside the gap.
 - (3) Reflection of plate surface.
 - (4) Floating of plate coming from

installation accuracy of each plate.

Contents	Systematic error		
	2-15 keVee	15-30 keVee	
(1) Plate gap geometry	+6.2/-22.8%	+1.9/-6.9%	
(2) Ring roughness	+6.6/-7.0%	+2.0/-2.1%	
(3) Cu ref dependence	+5.2/-0.0%	+2.5/-0.0%	
(4) Plate floating	+0.0/-4.6%	+0.0/-1.4%	
(5) Al seal dependence	+0.7/-0.7%	+0.0/-0.0%	
(6) Reconstruction	+3.0/-6.2%	+0.0/-0.0%	
(7) Timing (decay time, TTS)	+4.6/-2.9%	+0.4/-5.3%	
(8) Timing (response in detector surface)	+0.0/-8.0%	+0.0/-0.0%	
(9) Absorption & scattering	+0.7/-6.7%	+1.5/-1.1%	
(10) Dead tube origin	+10.3/-0.0%	+45.2/-0.0%	
(11) N.R.	+0.7/-0.7%	+0.0/-0.0%	


← Real data is well explained with background MC.

WIMP search with background evaluation in fiducial volume

- 705.88 live days data applying fiducial volume data reduction were used.
 (standard + R(T)<38cm + R(PE) < 20cm cut)
- Energy spectrum of data was fitted with background MC and WIMP MC in the energy range of 2–15 keVee considering systematic error in both background and WIMP MC.
- Best fit result is consistent with no WIMP case, then 90% C.L. upper limit on the WIMP-nucleon cross section was derived.

۸۱MP-nucleon σ [cm²]

 Our preliminary limit is 2.2 × 10⁻⁴⁴ cm² for 60 GeV WIMP mass.

