0vββ search with CMOS pixel charge plane in gain-less high-pressure gas Time Projection Chamber

Yuan Mei Lawrence Berkeley National Laboratory

TAUP 2017

Physics Motivation: Neutrinoless Double-Beta Decay

Ionization imaging (3D) for $0\nu\beta\beta$

Simulated events in ¹³⁶Xe $0\nu\beta\beta$ energy region, ionization track in 10bar Xe gas

⁸²Se 2v double-beta decay

• Michael Moe et. al. circa 1980s

y

- Thin ⁸²Se source (~7g, 97% enriched) in He gas TPC
- ²¹⁴Bi background suppression at 96%

Annu. Rev. Nucl. Part. Sci. 2014. 64:247–67

Challenges and solutions

To do a definitive experiment

- Scalable to large mass while retaining:
 - Excellent energy resolution at $Q_{\beta\beta}$
 - Background control: pure material and active discrimination
 - Geometrical signature of decay (positive signal identification)
 - Leverage industry to scale
- High pressure gaseous TPC
 - HP Xe has been proven to have excellent intrinsic energy resolution (ionization charge statistics)
 - PandaX-III and NEXT employ Micromegas and electroluminescence techniques to achieve high energy resolution and charge tracking

Gas-electron multiplication, stability?

• MicroMegas

• Micromesh placed (very) close to readout PCB

• GEM

- Array of micro-holes in thin foils with conductor cladding on both sides
- µ-PIC (Micro Pixel Chamber)
- Printed Circuit Board technology

CMOS charge sensor array for TPC

Numbers

High pressure Xenon TPC as an example

- ~50 free ions/electrons per keV energy deposition
- 136 Xe Q_{ββ}=2.458MeV \rightarrow 100k charges
- I0bar Xe intrinsic energy resolution: 0.3% FWHM at $Q_{\beta\beta}$ \rightarrow I30 e⁻ total fluctuation (σ , detection medium contribution)
- 1% FWHM energy resolution at $Q_{\beta\beta} \rightarrow 420 e^{-}$ fluctuation (σ) $\rightarrow 400 e^{-}$ electronic noise allowed (sum of all pixels)
- Track length 20~30cm → 300 pixels see charge if pitch 5~10mm
 → <30 e⁻ per pixel noise required
- 100% charge collection efficiency loss of efficiency is equivalent to increasing noise
- 10cm diameter array: ~100 chips
- Im diameter array: ~10k chips
- Charge drifting speed (sets the sampling rate requirement)
 - Electron: mm/µs
 - Ion: mm/ms

Topmetal

Xiangming Sun Former LBNL RNC postdoc, STAR HFT development until 2013 Now Professor, Director of Pixel Lab (PLAC) Central China Normal University (CCNU)

<u>Yuan Mei</u> LBNL NSD weak interactions Postdoc (2011–2015) Staff (2016–)

- 80×80µm pixel size
- Direct charge collection
- Standard 0.35µm CMOS process, no post-processing
- First version (2012), high noise & high bandwidth
- Second version (2014), <15e- noise on each pixel. In-chip signal processing, good for large scale array
- Third version (2016), specialized design for $0\nu\beta\beta$

Topmetal-S (2016)

chip layout

$\Sigma\Delta ADC$ spectrum

- •Single electrode: Imm dia. Topmetal or smaller electrode with externally `grown' structure
- •Distance between chips: 5~10mm
- •CSA: C_{in}~2pF, ENC<30e⁻, tunable biases through DACs

PCB

CMOS Sensor

- •Tunable feedback RC decay constant
- •Directly accessible analog output
- •Analog output (X2) feeds into a Sigma-Delta ADC

- •25.6MHz clock
- •X64 over sampling rate
- SINC4 decimation filter
- •200kHz signal bandwidth
- Equivalent of a 400ksps 16bit ADC
- •Raw modulator output
- •LVDS I/O

1

Design optimization (prototype)

t [ms]

t [ms]

Topmetal-S with Imm electrode

3mm

Topmetal-S Performance

A working Topmetal-S sensor

In

 $< 30e^{-}$ noise CSA

Working $\Sigma\Delta ADC$

1.0M

High pressure gas TPC prototype

Gas system

Charge plane: 127 chips, Φ10cm

- I mm dia. electrode
- •8mm pitch
- 127 chips on prototype

Topmetal-II⁻ seeing alpha (ion) tracks in air

SeF₆ gas for $0\nu\beta\beta$ in ⁸²Se

- ⁸²Se
 - High $Q_{\beta\beta} \approx 2995.5 \text{keV}$
 - $Q_{\beta\beta}$ for ¹³⁶Xe is 2458keV
 - A sharp drop in γ-ray backgrounds occurs above the ²⁰⁸TI (2615keV) line
- SeF₆
 - Used in early days of HV electrical insulation
 - Easy to enrich ⁸²Se (9% natural abundance)
 - Low effective Z : straighter tracks better tracking
 - Highly electronegative ion drifting only
 - Cannot sustain well-behaved avalanche gain

Must detect ions directly in gas

Credit: D. Nygren

Topmetal gain-less charge readout for $0\nu\beta\beta$ in $^{82}SeF_6$

Summary

- Topmetal direct charge sensor, without gas avalanche gain:
 - 1% FWHM energy resolution charge readout in HP Xe gas without sacrificing tracking
 - Very scalable leveraging electronics industry
 - Upgrade to PandaX-III, NEXT etc.
- Direct ion detection enables the use of SeF₆ gas
 - Provide an alternative isotope ⁸²Se.
 - Higher $Q_{\beta\beta}$ and better signal identification
 - Potential Xe/SeF₆ gas swap without modifying the rest of the system