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Radon Backgrounds
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Radon Backgrounds
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Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:
Electron recoils:
- 210pp & 210Bj betas and x-rays
Nuclear Recoils:
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Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds: SNOLAB Detector Backgrounds
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Potentially dominant backgrounds unless:

» Detector/copper surfaces clean at start
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 And protected from radon thereafter 10
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é recoil Calls for dedicated background controls:
5 210p detector I.  Limit exposure to radon during payload lifecycle
§ P Il. Dedicated low-radon cleanroom at SNOLAB
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J1od. Ill. Validate cleanliness of critical processes
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Payload Lifecycle & Radon Exposure .
#2 #3 210p},
Crystal Shaping Sensor Procedure (nBa/cm?)
& Polishing Fabrication #4
#1 Detector #1 — storage <0.1
Packaging o
L ow-Radon 5 #2 — polishing 12-45
Storage .
Tower #3 — fabrication 28
Assembly
#7 #6 #4 — packaging 4.8
Payload Installation Tower
@ SNOLAB Testing #5 — tower assembly 0.9
#6 — testing 1.1
#7 — installation <0.1

(w/ 1000x Rn mitigation)

#7 — installation
e /70
(w/o Rn mitigation)
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Payload Lifecycle & Radon Exposure .
#2 #3 210p},
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& Polishing Fabrication #4
1 Detector #1 — storage <0.1
# Packaging o
L ow-Radon 5 #2 — polishing 12-45
Storage -
Tower #3 — fabrication 28
Assembly
#7 #6 #4 — packaging 4.8
Payload Installation Tower
@ SNOLAB Testing #5 — tower assembly 0.9
210pp from Rn exposure (conservative plate-out tally): o= e 11
Detector surfaces: 47-80 nBqg/cm? a7 o ctallation
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Payload Lifecycle & Radon Exposure B o

#2 #3 210p},
Crystal Shaping Sensor .4 Procedure (nBa/cm?)

& Polishing Fabrication

Detector
#1 Packaging

Low-Radon

Storage #3
Tower
#7 #6 Assembly
Payload Installation Tower
@ SNOLAB Testing

210pp from Rn exposure (conservative plate-out tally):

Detector surfaces: 47—-80 nBg/cm?
Assume worst for sidewalls = 80 nBg/cm?
Sensor fab removes surface area on faces 2 50 nBg/cm?

Copper surfaces: <10 nBg/cm?

Plate-out =2x larger without low-radon cleanroom

#1 — storage <0.1
#2 — polishing 12-45
#3 — fabrication 28
#4 — packaging 4.8
#5 — tower assembly 0.9
#6 — testing 1.1
#7 — installation <0.1

(w/ 1000x Rn mitigation)

#7 — installation
e /70
(w/o Rn mitigation)
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Low-radon Cleanroom @ SNOLAB ~7

Pacific Northwest

via Vacuum-Swing Adsorption (VSA) .
Class-100 Low-radon Cleanroom Custom-built Radon Mitigation System

SNOLAB General
Lab Air =130 Bq/m3
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Air is dried (high radon)
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Pacific Northwest

Demonstration VSA @ SDSM&T .
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Validation of Critical Processes

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Baftelle Since 1965

Bottom-up estimate of 21°Pb plate-out from radon exposure in air: 4—2

210pp

Detector surfaces: 50/80 nBqg/cm? for faces/sidewalls

Tower-copper surfaces: <10 nBg/cm?

But doesn’t include:
» Initial level of surface contamination
- do surfaces start clean?
» Contamination directly from fabrication processes

(e.g., chemical contact)

R&D tests to validate critical processes:

Detector surfaces - crystal polishing & sensor fabrication

Copper surfaces < cleaning method

#1 — storage <0.1

#2 — polishing

#3 — fabrication

#4 — packaging 4.8
#5 — tower assembly 0.9
#6 — testing 1.1
#7 — installation <0.1

(w/ 1000x Rn mitigation)

W= : 70

Igation)
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Sensor Fabrication Test

Goals:

» Validate starting level of 21°Pb on detector surfaces
» Validate surface contamination from sensor fabrication

Etch wafers
at Stanford
fab facility

Assay in SMU
UltralLo-1800

Results:

Fab sensor
pattern at
Stanford

Assay in SMU
Ultralo-1800

v

40 nm pc's'a [ 600 nm Al (35%) I 40nm W

» Broad 4-5 MeV peak suggests upper-chain 238U alphas
» Precedent from DRIFT = Battat et al., NIM A794 (2015)
» Background concern = 234Th daughter beta decay

» Follow-up measurements:

B Backsides of wafers = no peak
B ICP-MS of wafers = few Bq/kg of 238U in aluminum
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Sensor Fabrication Test

Goals:

» Validate starting level of 21°Pb on detector surfaces

P Validate surface contamination from sensor fabrication

Etch wafers
at Stanford
fab facility

Assay in SMU
UltralLo-1800

Results:

» Broad 4-5 MeV peak suggests upper-chain 238U alphas

Fab sensor
pattern at
Stanford

Assay in SMU
Ultralo-1800

v

40 nm pc's'a [ 600 nm Al (35%) I 40nm W

» Precedent from DRIFT = Battat et al., NIM A794 (2015)
» Background concern = 234Th daughter beta decay

» Follow-up measurements:

B Backsides of wafers = no peak
B ICP-MS of wafers = few Bq/kg of 238U in aluminum

Not seen on SuperCDMS Soudan detectors

Working with vendor to pre-screen aluminum
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Proudly Operated by Baftelle Since 1965

XIA Ultralo-1800 Spectra (SMU)
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Copper Cleaning Test

Goal:

P Validate method for cleaning tower copper parts
B And thus starting contamination level for detector housings

Methodology:
P Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
» Mill off >1 mm from all surfaces to simulate parts fabrication
» Clean w/ PNNL acidified-peroxide etching recipe UltraLo-1800 Background not
» Use SMU Ultralo-1800 to measure surface alphas Subtracted (=25 nBa/cm? in **%o ROl

—
=
L 350+ ® 1st Cu sample Po-210 rate vs. time
210pg g ——— Best-fit Po + Pb model ,
& F —‘ L 300 © Best-fit Pb component: 69--36 nBg/cm
T 90 2nd 3653y of 2 | & | Best-fit Po component: 30136 nBg/cm?
S E ¢ \ N 2 X 2nd Cu sample (single measurement only)
@ 80 1°t test sample Background S 250 :
— :_ @
g — Sample £ 200
2 60F- t
E_E , 0
W 50 Po in Cu bulk 3150
E Q
40 o 100 McMaster OFHC
30 g Aurubis OFHC
= >
201 % 50 . I
10 ;— § o---
:I E 0 la— — 1 1 1 1 1
Og 1 0 50 100 150 200 250 300
Energy [MeV] Time since cleaning [days]
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15t Test Sample

Copper Cleaning Test

Goal:

P Validate method for cleaning tower copper parts
B And thus starting contamination level for detector housings

5

Methodology:
P Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
» Mill off >1 mm from all surfaces to simulate parts fabrication
» Clean w/ PNNL acidified-peroxide etching recipe
» Use SMU UltralLo-1800 to measure surface alphas

Ultralo-1800 Background not
Subtracted (=25 nBg/cm? in 21°Po ROI)

-
e
L 350 ® 1st Cu sample Po-210 rate vs. time
210pg g —— Best-fit Po + Pb model
& F —‘ L 300 © -~ Best-fit Pb component: 69-+36 nBqg/cm?
fE 90 znd assav of - O N B Best-fit Po component; 301--36 nBg/cm?
g F \ 2 X 2nd Cu sample (single measurement only)
S g0 1st N\ Back d S X i
8 80F 1% test sample ackgroun S 250
> 70 o 3
g F Sample £ 200
£ E o
W S0 Po in Cu bulk 21501
C Q
40 2 100 McMaster OFHC
30 3 Aurubis OFHC
E >
20£- S 50 . e i
E 2 - -
10— © -=-=7
E E 0 I ~ I I I I I
L 50 100 150 200 250 300

Anticipate <100 nBg/cm? 219Pb (>10x better than Soudan)

Energy [MeV]

Time since cleaning [days]
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Summary

Radon is an important background

consideration for SuperCDMS SNOLAB
B 219Pb within line-of-sight of detectors
is a potentially dominant background

Estimate of 21°Pb from plate-out:

B Detector faces/sidewalls: 50/80 nBg/cm?

B Copper housings: <10 nBg/cm?

Low-radon cleanroom for installation
at SNOLAB mitigates plate-out by =2x
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Sensitivity vs. 219Pb at Sidewall
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Proudly Operated by Baftelle Since 1965

1073

Dark Matter-nucleon gg, [pb]

0.5

B SDSM&T VSA demonstrates >1000x radon reduction

Validation of critical processes:

B Contamination during crystal polishing negligible
B Discovered uranium in detector-sensor aluminum = working with vendor to eliminate
B Demonstrated copper surfaces with <100 nBg/cm? 219Pb via PNNL acidified-peroxide etch

Ray Bunker
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Summary

Radon is an important background

consideration for SuperCDMS SNOLAB
B 219Pb within line-of-sight of detectors
is a potentially dominant background

Estimate of 21°Pb from plate-out:

B Detector faces/sidewalls: 50/80 nBg/cm?

B Copper housings: <10 nBg/cm?

Low-radon cleanroom for installation
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B SDSM&T VSA demonstrates >1000x radon reduction Demonstrated 219Pb at sidewalls:
detector + copper <200 nBg/cm?

Validation of critical processes:

B Contamination during crystal polishing negligible
B Discovered uranium in detector-sensor aluminum = working with vendor to eliminate
B Demonstrated copper surfaces with <100 nBg/cm? 219Pb via PNNL acidified-peroxide etch

Ray Bunker



Collaboration
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Crystal PO I iS h I n g TeSt NATIONAL LABORATORY

Proudly Operated by Baftelle Since 1965

Goal: XIA Ultralo-1800 Spectra (SMU)
» Validate 219Pb contamination rate during polishing 210pq
Y a0 ‘
H wf Pre-Process -
Methodologv: @ " E <200 nBg/cm? \\J Background
. o 70—
» Seven 100 mm Si wafers as proxy for detector surfaces s clean enough — Sample
8 't fortest
» Ultralo-1800 to measure surface alphas £ sof
» 10,000x radon w/ SDSM&T source to boost sensitivity s
30
Durridge Rad7 20;—
Nitrogen Measures ~118 kBq/m Pressure Cooker 101
Flow rate: 0.25 cfh Wafers in slurry Exhaust OQ:' L
Pylon Rn Source Temperature Monitor
Activity: 125 kBq Avg. ~ 86°F o 70 ‘
§ | Post-Process -
g " 2100 nBg/cm? .| Background
2 50— _
Magnetic Mixer H S Cl_eaner! Sample
g wof Mild etch from
Wk slurry solution
30— J{
201
100
210pp surface contamination during %

Energy [MeV]

polishing insignificant 2 <1 nBg/cm?
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