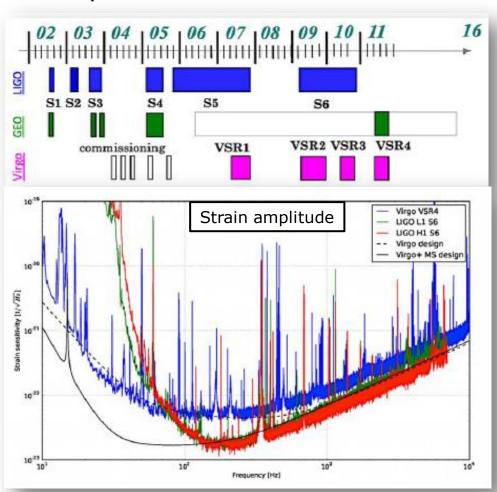


#### Advanced Virgo Status and Perspectives

Antonino Chiummo – EGO On behalf of the Virgo Collaboration

Email: antonino.chiummo@ego-gw.it



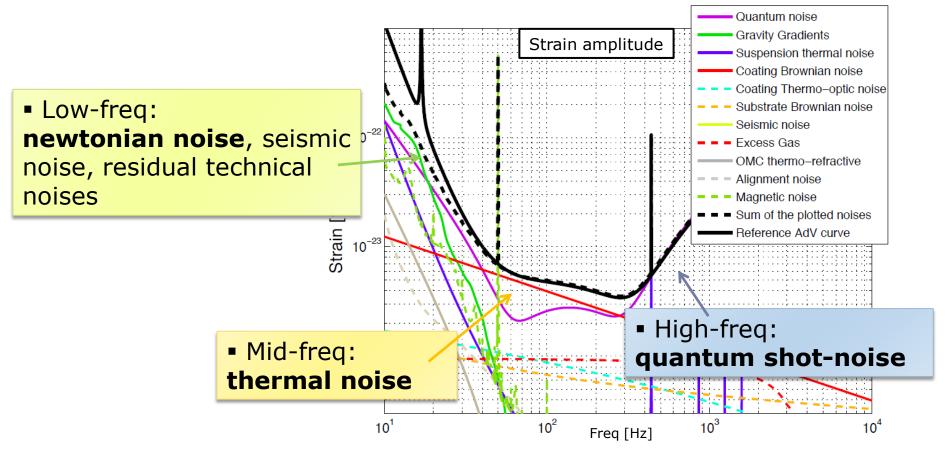

#### Beyond first generation



#### 1st generation LIGO, Virgo and GEO600 operated for about one decade

- Demonstrated a reliable technology
  - duty cycle up to 80%, good stationarity of noise
  - good knowledge of limiting noise sources

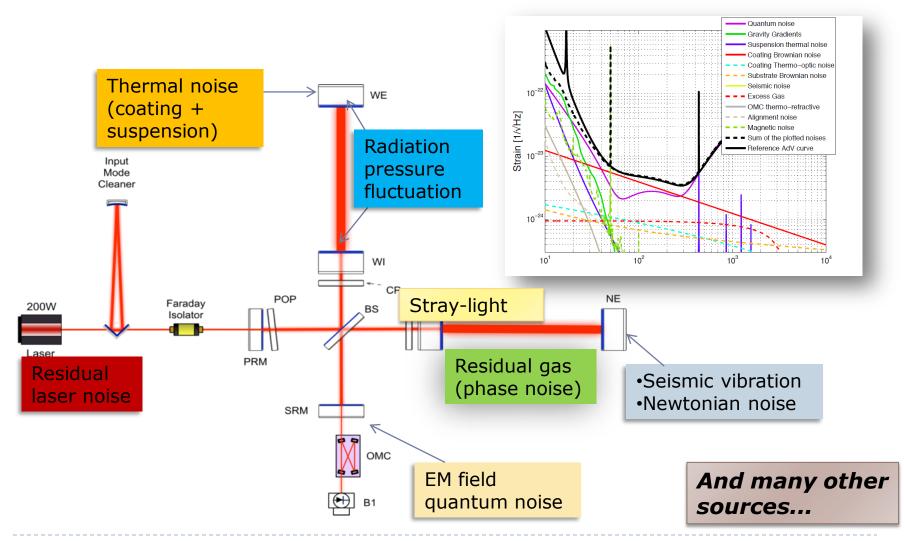
- **No detections** (expected detection rate ~0.01 ev/yrs) but:
  - lots of science produced meanwhile!
  - clear path towards 2<sup>nd</sup> generation antennas








# Beyond first generation: design


<u>Limiting noises at different frequency ranges:</u>







#### Beyond first generation: noise





#### Advanced Virgo

### Beyond first generation: actions

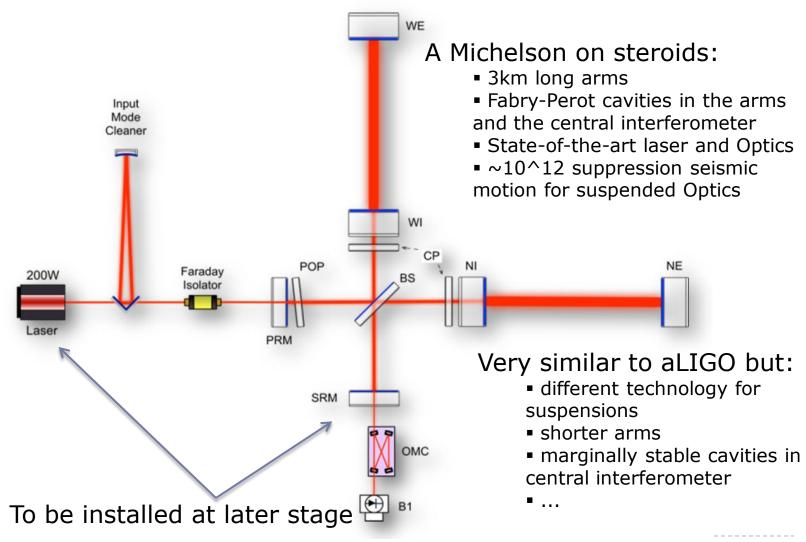
- Reducing thermal noise:
  - increased beam size @ input TM (2.5 x larger)
  - improved mirrors' planarity (16 x better)
  - Improved coatings for lower losses (7 x better)
- Reducing quantum noise:
  - Increased finesse of arm cavities (9 x larger than iVirgo, 3 x larger than Virgo+)
  - High power laser (16 x more input power)
  - Heavier test masses (2 x heavier)
- Seismic isolation:
  - iVirgo superattenuators compatible with AdV specs
  - adapted for new payload (added mass and complexity)
  - new electronics
- $\rightarrow$  Thermal compensation (100 x higher power on TM):
  - ring heaters
  - double axicon CO<sub>2</sub> actuators
  - CO<sub>2</sub> central heating
- Better vacuum (10<sup>-9</sup> mbar instead of 10<sup>-7</sup>)
- Stray light control
  - Suspended optical benches in vacuum
  - New set of baffles
















#### Advanced Virgo design









# Crossing the desert: integration





### Integration issues



From design to realization, aka "what can go wrong will go wrong..."

Many small annoyances and big troubles during the integration

| phase:                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          |
| □ Super-attenuator (>10-years-old) maraging blade failures: inspection of the status of all the blades and replaced 40% of all of them (as a precaution) |
| ☐ One of the suspended optics (compensation plate) was found damaged: dismantled and replaced                                                            |
|                                                                                                                                                          |

■ Monolithic suspensions failures: a long story...



#### Integration issues

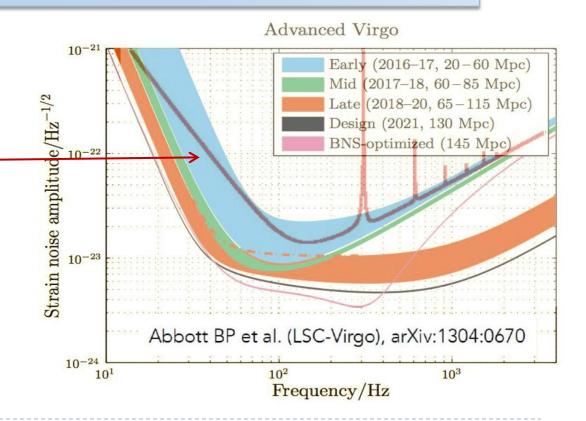


Monolithic suspensions already demonstrated during VSR3/4 (2010-11):

- > we did not expect issues from this side
- Repeated breaking of monolithic suspensions under vacuum



- > Throughout investigation to find the causes of failure and possible solutions:
  - Failure of glass anchors excluded by microscope analysis of fractures, breaking always occurred at the level of the fibers
  - Basic mechanism of fiber breaking under vacuum eventually identified:
    - o fast dust particles hit the fiber and produce fractures
    - o in vacuum large velocities are possible, given an initial momentum
    - o some pumping/venting cycles using scroll pumps provide non-negligible dust levels in chamber
    - o SEM and μ-Raman analysis of dust to understand origin



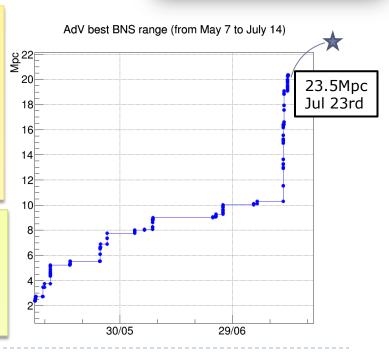

#### Integration issues



Temporary solution for O2 scope: back to steel wires for payloads Choice driven by schedule considerations.


Sensitivity with steel wires still compatible with the goal for the early phase

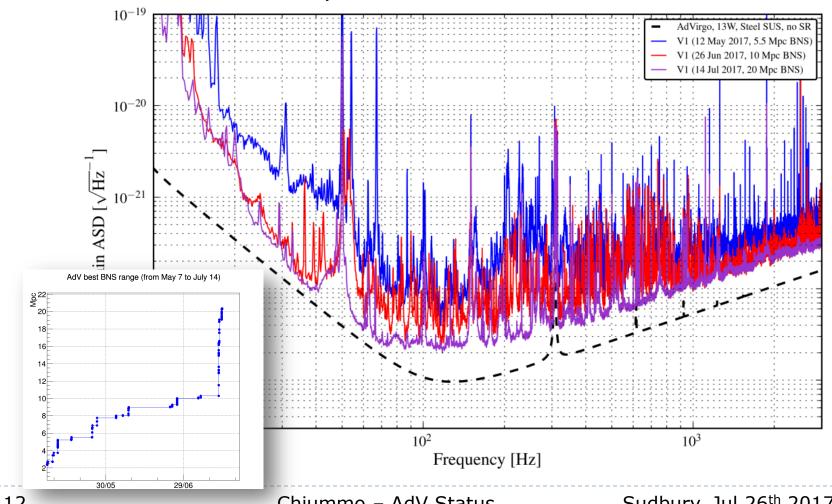







- ☐ Whole interferometer available on Oct 2016
  - First 1hr lock @ Dark Fringe on March 2017
    (Project Milestone!)
  - First AdV commissioning run (C8) May 5th to 8th
  - ER11 in June coincidence with aLIGO:
    - First part from 16 to 19: BNS range ~5-9Mpc, duty cycle ~70%
    - Second part from 23 to 26: BNS range ~8-9Mpc, DC ~80%




- ☐ After ER11:
  - Investigation on stray light
  - Noise injections (magnetic, acoustic, ...)
  - Switch-off tests of selected devices
  - Data Acquisition pipeline and read-out improvement
  - Lock robustness improvement (alignment,...)
  - ...
  - ☐ Efforts payed off:
    - longest lock segment (so far) ~20hrs
    - "psychological" milestone of beating iVIRGO best sensitivity reached
    - BNS range at 20Mpc, and counting...





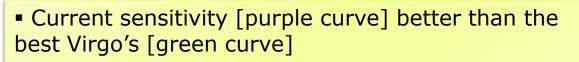


#### Evolution of strain sensitivity in some 2 months:

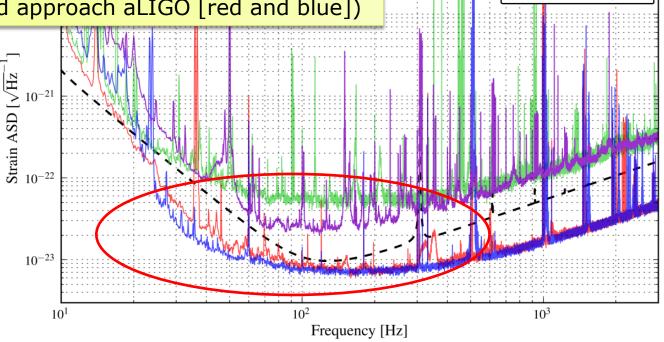







AdVirgo, 13W, Steel SUS, no SR V1 in VSR4 (5 Aug 2011)

V1 (14 Jul 2017, 20 Mpc BNS)


H1 in O2

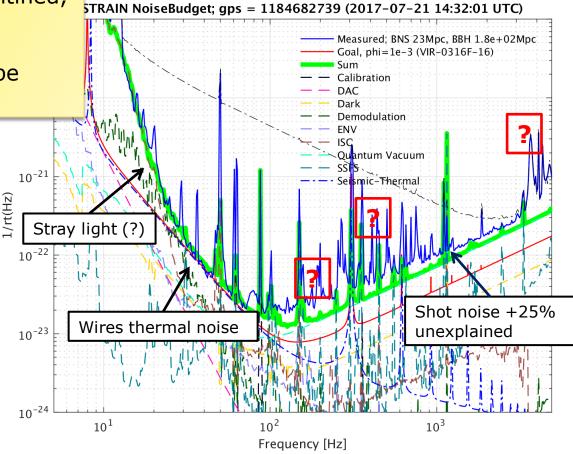
L1 in O2

Comparison of current AdV strain sensitivity with relevant references:



 Still much to do to exploit the full potential [dashed line] (and approach aLIGO [red and blue])








Noise-budget tool fully working

Most of the noise sources identified,
 will be tackled after O2

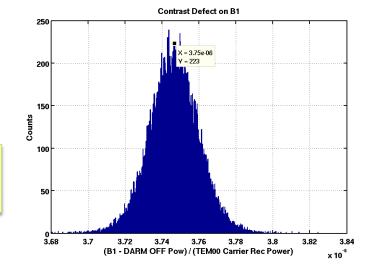
Still some "mistery noise" to be understood





#### Optical characterization



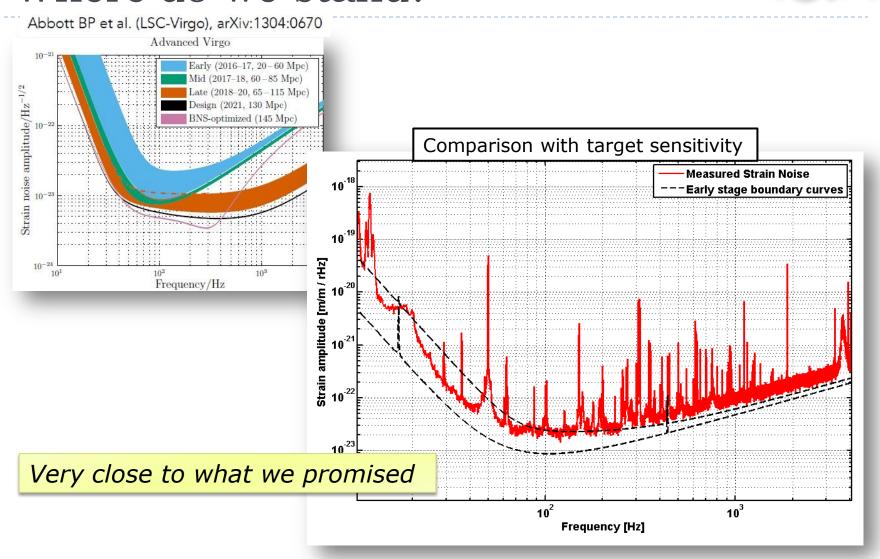

# Extensive measurement campaign to characterize optical parmaters

- Carrier and sidebands recycling gains:
  - Carrier and 56 MHz close to design value;
  - 6 MHz sideband around 50% (for all modes) as expected from simulations;
- Arm cavities characterization:
  - RTL reasonable (<75ppm) and not too much unbalanced;
  - Finesse as nominal;
  - Very low Finesse asymmetry;
  - Low contrast defect ~4 ppm;

Recycling gains in PR cavity

|         | Expected | Measured |
|---------|----------|----------|
| Carrier | 41       | 36-39    |
| 6 MHz   | 77       | ~ 40     |
| 56 MHz  | 13       | ~12      |

|       | RTL      | Finesse        |
|-------|----------|----------------|
| North | ~ 60 ppm | 461 <u>±</u> 6 |
| West  | ~ 54 ppm | 464 <u>±</u> 6 |




The Optical parameters are very close to nominal



#### Advanced Virgo

#### Where do we stand?







#### Summary and perspectives

- ☐ Advanced Virgo is now fully operational:
  - Monolithic suspension replaced with metallic wires to increase reliability but origin of the failing understood
  - Optical parameters close to nominal values
  - Lock acquisition robust and reliable (lock segments ~tens of hrs)
  - Strain sensitivity close to "early-stage" target
  - Most of the limiting noise sources identified
- ☐ We will go through data-taking (hopefully O2) and then:
  - Vacuum system upgrade for dust protection
  - Monolithic suspensions re-installation
  - High Power laser installation
  - More noise-hunting (stray light issues, data-acquisition hardware configuration, ...)
  - Parameters tuning with thermal compensation system

...To be ready for O3







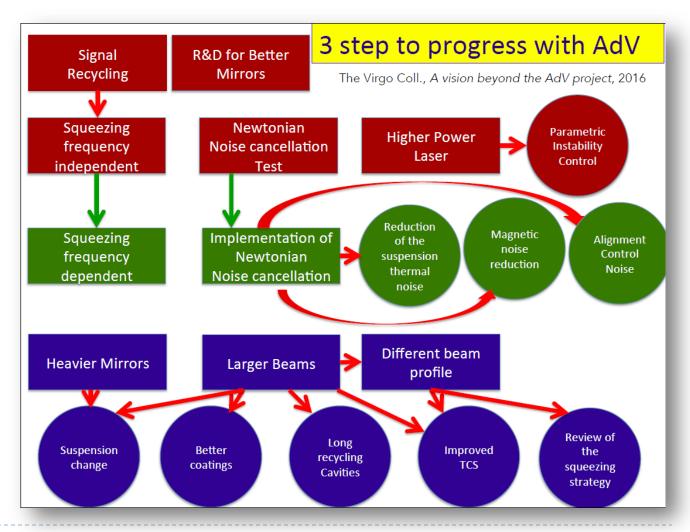




#### Extra Slides



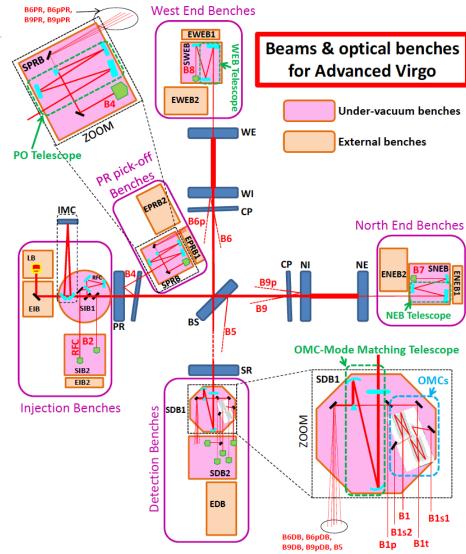



#### Advanced Virgo





#### Beyond AdV








# AdV setup







# AdV vs initial Virgo



| Subsystem and Parameters              | AdV design (TDR)                        | Initial Virgo                         |
|---------------------------------------|-----------------------------------------|---------------------------------------|
| Sensitivity                           |                                         |                                       |
| Binary Neutron Star Inspiral Range    | 134 Mpc                                 | 12 Mpc                                |
| Anticipated Max Strain Sensitivity    | $3.5 \cdot 10^{-24} / \sqrt{\text{Hz}}$ | $4 \cdot 10^{-23} / \sqrt{\text{Hz}}$ |
| Instrument Topology                   |                                         |                                       |
| Interferometer                        | Michelson                               | Michelson                             |
| Power Enhancement                     | Arm cavities and                        | Arm cavities and                      |
|                                       | Power Recycling                         | Power Recycling                       |
| Signal Enhancement                    | Signal Recycling                        | n.a.                                  |
| Laser and Optical Powers              |                                         |                                       |
| Laser Wavelength                      | 1064 nm                                 | $1064\mathrm{nm}$                     |
| Optical Power at Laser Output         | >175 TEM <sub>00</sub> W                | 20 W                                  |
| Optical Power at Interferometer Input | 125 W                                   | 8 W                                   |
| Optical Power at Test Masses          | 650 kW                                  | 6 kW                                  |
| Optical Power on Beam Splitter        | 4.9 kW                                  | $0.3\mathrm{kW}$                      |
| Test Masses                           |                                         |                                       |
| Mirror Material                       | Fused Silica                            | Fused Silica                          |
| Main Test Mass Diameter               | $35\mathrm{cm}$                         | $35\mathrm{cm}$                       |
| Main Test Mass Weight                 | 42 kg                                   | 21 kg                                 |
| Beam Splitter Diameter                | $55\mathrm{cm}$                         | $23\mathrm{cm}$                       |
| Test Mass Surfaces and Coati          | ngs                                     |                                       |
| Coating Material                      | Ti doped Ta <sub>2</sub> O <sub>5</sub> | $Ta_2O_5$                             |
| Roughness*                            | < 0.1 nm                                | < 0.05 nm                             |
| Flatness                              | 0.5 nm RMS                              | < 8 nm RMS                            |
| Losses per Surface                    | 37.5 ppm                                | 250 ppm (measured)                    |
| Test Mass RoC                         | Input Mirror: 1420 m                    | Input Mirror: flat                    |
|                                       | End Mirror: 1683 m                      | End Mirror: 3600 m                    |
| Beam Radius at Input Mirror           | 48.7 mm                                 | 21 mm                                 |
| Beam Radius at End Mirror             | 58 mm                                   | $52.5\mathrm{mm}$                     |
| Finesse                               | 443                                     | 50                                    |
| Thermal Compensation                  |                                         |                                       |
| Thermal Actuators                     | CO <sub>2</sub> Lasers and              | CO <sub>2</sub> Lasers                |
|                                       | Ring Heater                             |                                       |
| Actuation points                      | Compensation plates                     | Directly on mirrors                   |
|                                       | and directly on mirrors                 |                                       |
| Sensors                               | Hartmann sensors                        | n.a.                                  |
|                                       | and phase cameras                       |                                       |

| Subsystem and Parameters              | AdV design (TDR)       | Initial Virgo          |  |  |
|---------------------------------------|------------------------|------------------------|--|--|
| Suspension                            |                        |                        |  |  |
| Seismic Isolation System              | Superattenuator        | Superattenuator        |  |  |
| Degrees of Freedom of Inverted        | 6                      | 4                      |  |  |
| Pendulum Inertial Control             |                        |                        |  |  |
| Test mass suspensions                 | Fused Silica Fibres    | Steel Wires            |  |  |
|                                       | (optimized geometry)   |                        |  |  |
| Vacuum System                         |                        |                        |  |  |
| Pressure                              | 10 <sup>-9</sup> mbar  | $10^{-7}\mathrm{mbar}$ |  |  |
| Injection System                      |                        |                        |  |  |
| Input mode cleaner throughput         | >96%                   | 85% (meas.)            |  |  |
| Detection System                      |                        |                        |  |  |
| GW Signal Readout                     | DC-Readout             | Heterodyne (RF)        |  |  |
| Output Mode Cleaner                   | RF Sidebands and       | Higher Order Mode      |  |  |
| Suppression                           | Higher Order Modes     |                        |  |  |
| Main Photo Diode Environment          | in Vacuum              | in Air                 |  |  |
| Lengths                               |                        |                        |  |  |
| Arm Cavity Length                     | 3 km                   | 3 km                   |  |  |
| Input Mode Cleaner                    | 143.424 m              | 143.574 m              |  |  |
| Power Recycling Cavity                | 11.952 m               | 12.053 m               |  |  |
| Signal Recycling Cavity               | 11.952 m               | n.a.                   |  |  |
| Interferometric Sensing and Control   |                        |                        |  |  |
| Lock Acquisition Strategy             | Auxiliary Lasers       | Main Laser             |  |  |
|                                       | (different wavelength) |                        |  |  |
| Number of RF Modulations              | 3                      | 1                      |  |  |
| Schnupp Asymmetry                     | $23\mathrm{cm}$        | 85 cm                  |  |  |
| Signal Recycling Parameter            |                        |                        |  |  |
| Signal Recycling Mirror Transmittance | 20 %                   | n.a.                   |  |  |
| Signal Recycling Tuning               | $0.35\mathrm{rad}$     | n.a.                   |  |  |

#### From AdV TDR

https://tds.ego-gw.it/?content=3&r=9317

dV Status

Sudbury, Jul 26th 2017