

GAPS: A SEARCH FOR DARK MATTER SIGNALS IN COSMIC RAY ANTINUCLEI

Rachel Carr · IIIi for the GAPS collaboration TAUP 2017 · July 27, 2017 Low-energy (< 1 GeV) cosmic ray antinuclei, namely ANTIDEUTERONS, ANTIPROTONS, ...

> are a low-background, largely unexplored indirect signal from dark matter

The General Antiparticle Spectrometer (GAPS)

will perform the first dedicated search for this signal

D

Low-energy antideuterons are rarely produced from standard astrophysics \rightarrow LOW BACKGROUND FOR ANTIDEUTERONS FROM NEW PHYSICS

Rachel Carr, for the GAPS collaboration – TAUP 2017

ANTIDEUTERON production by self-annihilation or decay of DARK MATTER (e.g., WIMPs, gravitinos)

ANTIDEUTERON production by self-annihilation or decay of DARK MATTER (e.g., WIMPs, gravitinos): far above background at low energies

EXPECTED ANTIDEUTERON FLUX AT TOP OF EARTH'S ATMOSPHERE

estimated for solar modulation minimum (i.e., before 2021)

ANTIDEUTERONS HAVE <u>NEVER BEEN SEEN</u> IN COSMIC RAYS

GAPS WILL MAKE THE FIRST DEDICATED SEARCH FOR LOW-ENERGY ANTIDEUTERONS

ALSO FROM GAPS: FIRST PRECISION MEASUREMENT OF LOW-ENERGY ANTIPROTONS

 \rightarrow Constraints on cosmic ray propagation models \rightarrow Constraints on light DM and primordial black holes

ANTIDEUTERON INTERACTION IN GAPS

ANTIDEUTERON INTERACTION IN GAPS

ANTIDEUTERON vs. ANTIPROTON

(same incident velocity)

GAPS INSTRUMENTATION

PLASTIC SCINTILLATOR TOF

 \rightarrow Rough tracking, master trigger

Strips: 1.8m x 0.18m x 0.5cm Read out both ends with PMTs/SiPMs 500 ps timing resolution

Si(Li) DETECTORS (1000+)

\rightarrow Exotic atom ID, tracking

Discs: 2.5 mm thick, 10 cm diameter Dual energy range: X-rays, MIPs < 4 keV resolution for X-rays

Demonstrated Si(Li), TOF, and cooling system during flight
Measured backgrounds

Rachel Carr, for the GAPS collaboration – TAUP 2017

Technology

Massachusetts Institute of UC San Diego

UNIVERSITY of HAWAI'I°

UCLA

ONGOING DEVELOPMENT OF LARGE SI(LI) DETECTORS

ONGOING WORK ON TOF SYSTEM

225 scintillation counters, read out on both sides using custom ASIC boards

Prototype 120 cm paddles

Currently determining:

PMT vs. SiPM

TOF-based trigger scheme under development

PREPARING TO LAUNCH IN 2020

Rachel Carr, for the GAPS collaboration - TAUP 2017

GAPS RESULTS BY 2021:

Potential for first detection of antideuterons in cosmic rays

First precision measurement of low-energy antiprotons

→ Unique probes of a variety of dark matter models

Rachel Carr, for the GAPS collaboration – TAUP 2017