The Solid experiment: Search for sterile neutrinos at the SCK-CEN BR2 reactor

Luis MANZANILLAS

manzanillas@lal.in2p3.fr LAL-IN2P3-CNRS (France) On behalf of the SoLid collaboration TAUP 2017

Outlook

Motivations

- Detector technology concept
- Construction and Quality Assurance (QA)
- Expected physical results
- Summary

Physics Motivations

- Anomalies: The reactor antineutrino anomaly and gallium anomaly both show discrepancies wrt expectations at ~3σ level
 - Oscillations into a **light sterile neutrino state** ($\Delta m^2 \sim 1 \text{ eV}^2$) could account for such deficits

- Distortion observed around 5 MeV ("bump") in the reactor antineutrino energy spectrum
 - Hints point to ⁽²³⁵⁾**U** (1609.03910, 1608.04096, 1512.06656)

SoLid goals:

- RAA: Search for an **energy distortion** pattern at short baselines
- 5 MeV "bump": Provide a **new** measurement of ²³⁵U fuel **antineutrino spectrum** with a different detection technology

Observation / Prediction 1.1 0 1.1 1.1 1.0 1 1 0 5 PRELIMINARY tor shape error seminar@CERN 0.95 Double Ο. Chooz to Prediction ber + Mueller) 0.9 Daya Bay Ratio 1508.04233 ² contribution (يَّ,) 4 Prompt Energy (MeV) - MC) / MC - MC) / MC 0.2RENO 1511.05849 0.1 Data Data Prompt Energy (MeV)

Luis MANZANILLAS

The SoLid technology

• Inverse beta decay: $\overline{\mathbf{v}}_{\mathbf{e}} + \mathbf{p} \rightarrow \mathbf{e}^{+} + \mathbf{n}$

3D highly segmented composite detector

- 5 cm x 5 cm x 5 cm **PVT** cubes
 - e+ interaction
- 2 layers / cube of LiF:ZnS(Ag) for neutron detection
 - Neutron capture on Li in ZnS layer :
 n + ⁶Li→³H + α + 4.78 MeV
- Signals of n and e/γ very different
 - \rightarrow PSD discrimination + neutron trigger
- Cubes optically separated (tyvek)
- WLS fibers + SiPM to read out signals

JINST, Vol. 12, 2017, arXiv:1703.01683

27/07/2017

Validation of technology

• From prototype to full scale detector

Validation of technology (SM1 at BR2)

27/07/2017

Luis MANZANILLAS

The SoLid (1600 kg) detector

5 Modules of 10 planes

- Planes of 16x16 cubes
- 4 x (fiber + SiPM + Mirror) per cube
- Automated calibration system
- Container (2.4x2.6x3.8 m) for **cooling at 5 °C**
 - Reduction of dark count rate

Shielding:

- Water wall: 50 cm thick, 3.4 m high, 28000 kg
- Polyethylene ceiling: 50 cm thick, 6000 kg

27/07/2017

The BR2 site and reactor

- Best fit RAA \rightarrow Oscillation length of 3 m for 3 MeV v 's \Rightarrow Compact source
- **Compact** reactor **core** $\Phi < 50$ cm, h = 90 cm
 - Baselines : $6 \rightarrow 9 \text{ m}$
- Thermal power: 50-80 MW
- Highly ²³⁵U enriched (93.5 %)
- 150 days per year duty cycle
 - Reactor off data for background estimation and subtraction
- No nearby experiments
- Low background (neutron, γ)

SoLid phase 1 commissioning status

27/07/2017

Quality assurance and calibration

All frames scanned with n/γ sources to validate light yield, n response, n capture efficiency

Linearity and light yield

- Exceeds SoLid requirements $(40 \text{ PA/MeV} \rightarrow > 60 \text{PA/MeV} !)$
- Homogeneous response
 - Can be improved with correction from attenuation length

• Initial measurement of energy linearity response

• Linear response of PVT from $\sim 340 \text{ keV} - 2000 \text{ keV}$

• Several $\gamma / e^{-} / n$ sources (²²Na, ¹³⁷Cs, 207 Bi, 60 Co, 252 Cf, AmBe) + μ to add more calibration points in the future

Neutron trigger deployment

- Dedicated neutron trigger for neutrino detection.
 - Implemented in FPGAs.
 - Based on peak counting.
 - Combined with large buffer for prompt detection→ high IBD efficiency.
- Recently deployed with CALIPSO
 - Fulfills SoLid requirements

(n trigger eff > 60 %)

Luis MANZANILLAS

Expected physics results

• New detector concept [JINST 12 (2017) no.04, arXiv:1703.01683]

- Robust n/e- γ discrimination
- High segmentation for background reduction
- Construction of SoLid phase 1 (1600 kg) ongoing
- Several upgrades to reduce background
- Quality assurance ongoing: Light yield + neutron trigger meets (exceeds!) SoLid requirements
 - Light yield > 60 PA/MeV
 - Neutron trigger efficiency > 60 %
- Data taking expected by September 2017
- First **physics results** expected by **2018**

Thanks for your attention

Stay tuned !