

RESULTS OF THE FIRST Nai SCINTILLATING CALORIMETER PROTOTYPES BY COSINUS

TAUP 2017 24 - 28 July 2017

Florian Reindl, INFN – Sezione di Roma 1 for the COSINUS collaboration

DARK MATTER – ANNUAL MODULATION

DAMA/LIBRA Target: Nal (TI)

Period: 0.998 ± 0.002 years ✓ Phase: 24th May +/- 7 days ✓

Convincing non-DM explanation X

Contradiction

For standard assumptions

WHAT ARE THE UNKNOWNS?

Astro physics

Dark matter halo ←→ Velocity distribution

Particle physics

Interaction mechanism

\rightarrow Target material dependence \rightarrow \rightarrow Test DAMA with Nal experiment(s)

THE COSINUS R&D PROJECT

- R&D project, technological development
- Funded by the "CSN 5" of INFN
- Hosted at LNGS
- 3 years for prototype development [2016 2018]
- Eur. Phys. J. C (2016) 76:441

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Florian Reindl

CRYOGENIC DETECTOR

CRYOGENIC DETECTOR

Phonon signal (~90 %)

(almost) independent of particle type

precise measurement of the deposited energy

SCINTILLATING CALORIMETER

Phonon signal (~90 %)

(almost) independent of particle type

precise measurement of the deposited energy

Scintillation light (few %)

Particle-type dependent → LIGHT QUENCHING

COSINUS PERFORMANCE GOALS

Eur. Phys. J. C (2016) 76:441

Bring Nal-based cryogenic detectors to level of existing ones (e.g. CRESST-II):

1keV nuclear recoil threshold

4% of deposited energy measured as scintillation light

SIMULATION 100 KG-DAYS BEFORE CUTS

SIMULATION 100 KG-DAYS BEFORE CUTS

Black: β/γ-background flat 1c /(keV kg day) + ⁴⁰K: 600μBq/kg

Red: 10 GeV/c² WIMP with 2E-04 pb as from Savage et al.

SIMULATION 100 KG-DAYS BEFORE CUTS

WIMP events

Energy	# Events	Fraction
1-2 keV	1078	45 %
2-6 keV	1262	53 %
> 6 keV	46	2 %
TOTAL	2386	100 %

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

COMPARE DAMA TO COSINUS

COMPARE DAMA TO COSINUS

COMPARE DAMA TO COSINUS

FIRST NAI PROTOTYPE

DATA FROM 1ST PROTOTYPE

- Energy threshold: 10 keV
- For β/γ-events:
 3.7% of the energy deposited in the Nal crystal is measured by the light detector (design goal 4%)

11.2 detected photons per keV of energy deposition

First successful measurement of a Nal crystal as cryogenic detector

Improve detector performance

2ND PROTOTYPE PROOF-OF-PRINCIPLE OF FINAL DETECTOR DESIGN

Final design with beakershaped light absorber

40mm

²⁴¹Am GAMMA CALIBRATION DATA FROM THE 2ND PROTOTYPE

PERFORMANCE OF THE 2ND PROTOTYPE

- Phonon detector resolution (at zero energy): 1.0keV
- Absolute light yield for a β/γ -event: **13** % (~39 photons/keV)

Further improvement of phonon detector performance required

QUENCHING FACTOR MEASUREMENT

MLL - Tandem accelerator at TUM/LMU in Munich

11 MeV neutrons

Dilution cryostat available and ready to be used

Smaller version of the COSINUS detector module

GOAL:

Precise determination of light quenching factor for Na and I at <u>mK-temperatures</u>

beam-time approved for September

SUMMARY COSINUS

1st successful measurement of a Nal-based cryogenic calorimeter →
 publication submitted to journal

2nd measurement: proof-of-principle of final detector design (incl. beaker-shaped light absorber)

□ Precise measurement of QFs @MLL accelerator planned for 09/2017

OUTLOOK COSINUS

COSINUS is on a good way to achieve CRESST-II like performance. If we succeed:

- COSINUS-1π Comparatively little exposure O(100kg day) needed to answer whether DAMA sees a nuclear recoil signal, or not
- COSINUS-2π With a <u>significantly</u> increased target mass → sensitivity for modulation signal