Recent Solar neutrino Results from Super-Kamiokande

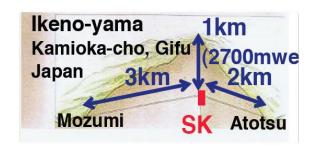
Yuuki Nakano (Kamioka Observatory)

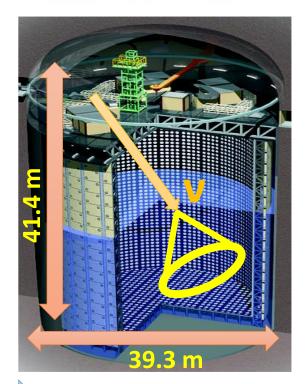
for the Super-Kamiokande collaboration

26th, July 2017 (Wed)

TAUP 2017 @ Sudbury, Canada.

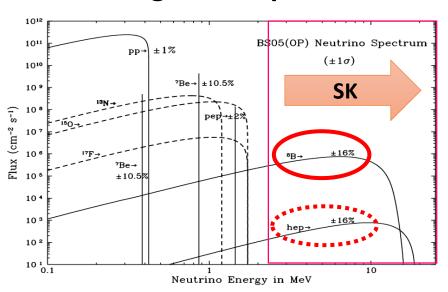
Supported by Grant-in-Aid for Young Scientists (B) 17K17880

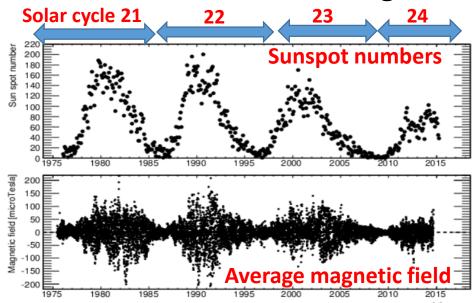



Contents

- Super-Kamiokande
 - Detector
 - Physics motivation
 - Recent progress in solar neutrino analysis
- 8B solar neutrino flux measurement
 - Observed signal
 - Yearly flux measurement
 - Periodic analysis
- Spectrum analysis
- Summary

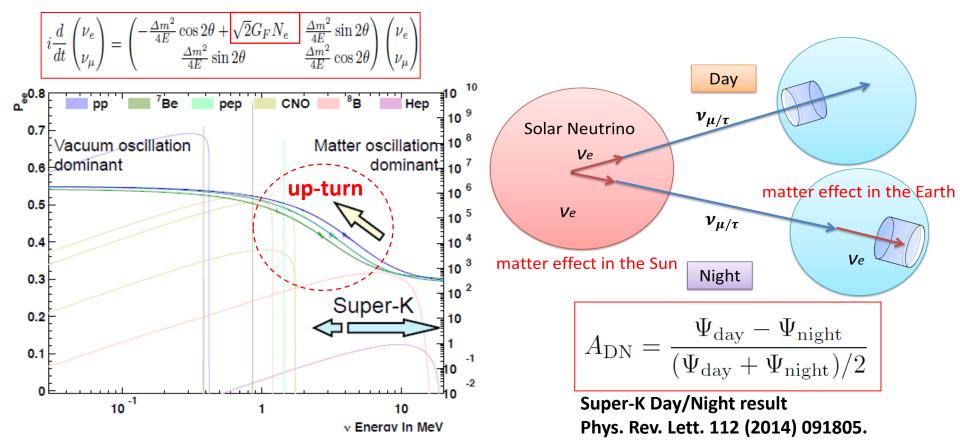
Super-Kamiokande


- Super-Kamiokande detector
 - Located at Kamioka, Japan
 - 1000 m under Ikenoyama mountain
 - 2700 m water equivalent
 - 50 kton ultra pure water tank
 - More than 11,000 20-inch PMTs for ID
 - 22.5 kton for the fiducial volume
 - Water Cherenkov technique
 - Energy, direction, particle ID
- Many physics targets
 - Astrophysical neutrino (Solar, Supernova)
 - Atmospheric neutrino
 - Proton decay
 - Long base line neutrino (T2K)
 - Dark matter search etc...



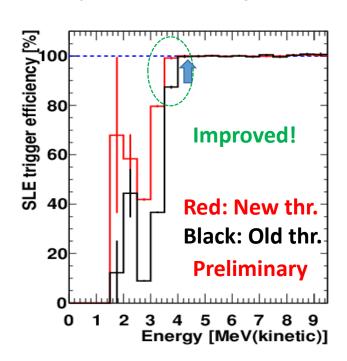
Physics motivation (1)

- Standard Solar Model (SSM) describes the profile of the Sun well.
 - SSM predicts the solar neutrino fluxes.
 - Super-K has observed ⁸B neutrino because of its high energies (<~14 MeV).
- Several periodical solar activities are observed.
 - Variation of the sunspot number at the surface (~11 years).
 - The Sun itself oscillates due to the acoustic waves (~5 minutes).
- Searching for the periodic modulation of v fluxes is interesting.


Left figure: Astrophys. J. 621 85 (2005).

Year

Sunspot number is taken from http://solarscience.msfc.nasa.gov/greenwch/spot num.txt Average magnetic field is taken from: http://wso.stanford.edu/meand/MF timeseries.txt


Physics motivation (2)

- Neutrino oscillation due to the matter effect (MSW effect)
 - Spectrum "up-turn" expected by MSW effect in the Sun.
 - → MSW effect leads to a resonant conversion of the higher energy v.
 - Day/Night flux asymmetry due to terrestrial matter effect.
 - → Regeneration of electron-v is expected when v pass through the Earth.

Solar neutrino analysis in Super-K

- Last year, we submitted a paper about the solar neutrino analysis results (using SK-IV 1664 days data sample).
 - Phys. Rev. D 94, 052010 (2016), arXiv: 1606.07538
- Updated results are presented.
 - 8B solar neutrino flux with SK-IV 2365 days sample (5200 days).
 - Energy spectrum with SK-IV 2645 days sample (5480 days).
- Recent progress of solar analysis.
 - Yearly ⁸B flux plot to see any correlation with solar activity.
 - Periodic modulation of solar v flux.
 - Lower trigger threshold in May 2015.
 - Detection efficiency in 3.5-4.0 MeVkin.
 ~84%→ ~99%.

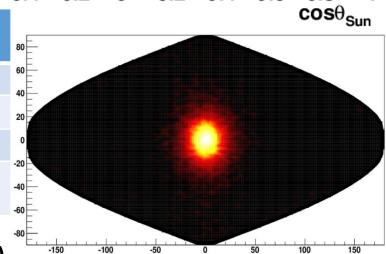
Observed 8B solar neutrino signal

⁸B neutrino measurement

Cherenkov light generated by recoil electron scattered with v.

$$v_{\chi} + e^- \rightarrow v_{\chi} + e^-$$

A total of 84k solar neutrinos were observed until March 201 (89k events until March 2017)


Measured 8B fluxes are consistent within uncertainties.

05000		•			
12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	Preliminary	-	: Data(stat	. only)	
э 25000	SK SK		Backgrou	ind	
20000	θ_{sun}^{KV}	Sun		<u>-</u> ار - ار	
15000 16. 10000		*			
5000	SK I-IV combined flux (until March 2016) DATA/MC = 0.4486 ± 0.0062(stat.+syst.)				
tent 0_1		3 (stat.+sys 0.4 -0.2 0	t.) $\times 10^6 \text{ cm}^{-1}$	-2sec-1] =	

	SK phase	Energy threshold [MeV(kin)]	Live time [day]	⁸ B Flux [×10 ⁶ /cm²/sec]
	SK I	4.5-19.5	1496	$2.38 \pm 0.02 \pm 0.08$
	SK II	6.5-19.5	791	$2.41 \pm 0.05^{+0.16}_{-0.15}$
	SK III	4.0-19.5	548	$2.40\pm0.04\pm0.05$
	SK IV	3.5 -19.5	2365 2645	$2.32 \pm 0.02 \pm 0.04$ Under preparation
PAG = G= \(406 / 2 /				

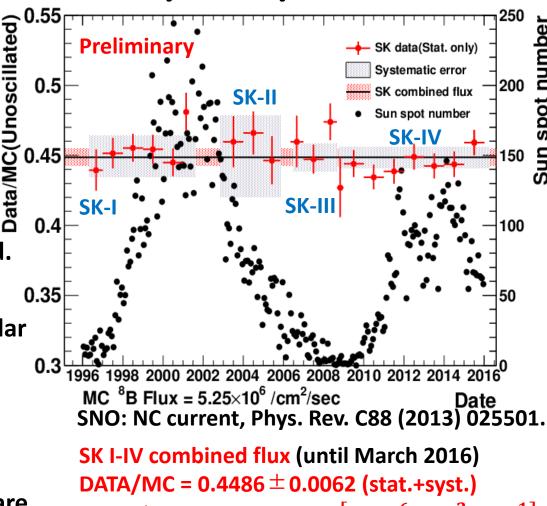
MC: 5.25×10^{6} /cm²/sec

(SNO: NC current, Phys. Rev. C88 (2013) 022501.)

⁸B solar neutrino yearly flux

Solar activity cycle

Sun spot numbers are strongly correlated with the solar activity cycle (~11 years).

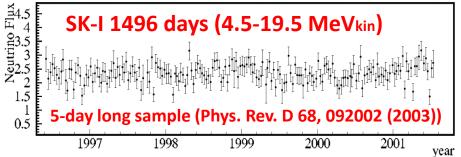

SK has observed ⁸B solar neutrino for ~20 years (More than 1.5 cycle). Data taken until March 2016 is used.

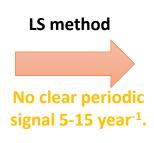
▶8B flux vs. sun spot

No correlation with the 11 years solar activity is observed.

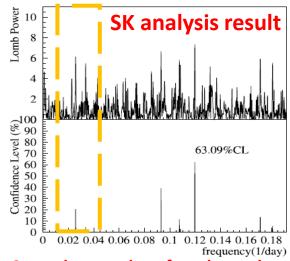
$$\chi^2 = 15.52/19(D.0.F)$$
Prob. = 68.9 %

Super-K solar rate measurements are fully consistent with a constant solar neutrino flux emitted by the Sun.

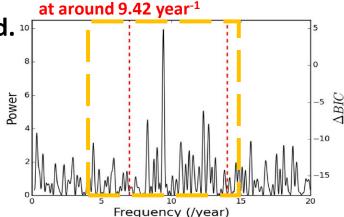



2.355 \pm 0.033 (stat.+syst.) [\times 10⁶ cm⁻² sec⁻¹]

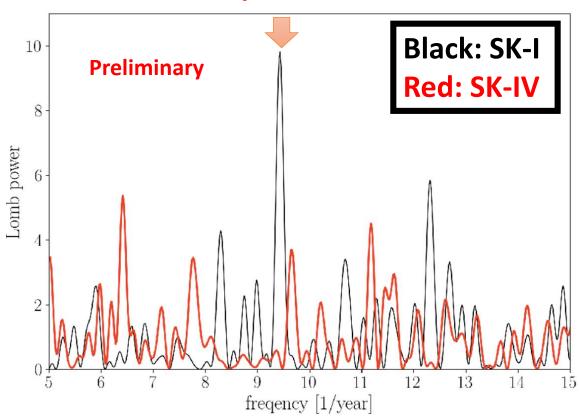
Sun spot number: http://www.sidc.be/silso/datafiles Source: WDC-SILSO, Royal Observatory of Belgium, Brussels.


Periodic modulation analysis

- SK collaboration reported the time variation of 5-day long sample of the observed ⁸B v flux (Phys. Rev. D 68, 092002 (2003)).
- SK performed a periodic analysis using Lomb-Scargle (LS) method.



- Several papers reported that a maximum peak is observed at around 9.42 year⁻¹.
 - Cf.) Astropart. Phys. 82, 86-92 (2016).
 - Generalized Lomb-Scargle (GLS) method is used. 10
- SK has reanalyzed SK-I data with GLS method provided by astroML.
- SK-IV data is also analyzed with GLS.



Periodic modulation results

- Using the Generalized LS method, both SK-I and SK-IV are analyzed.
- 5-day long sample is made from SK-I data and SK-IV data.
 - SK-I: 1496 days data (4.5-19.5 MeVkin), Phys. Rev. D 68, 092002 (2003).
 - SK-IV: 1664 days data (4.5-19.5 MeVkin), Phys. Rev. D 94, 052010 (2016).
- Search region 5-15 year⁻¹.
- Maximum peak at around 9.42 year⁻¹ is not found in SK-IV.

Global oscillation analysis input

- SK-I 1496 days, Spectrum: 4.5-19.5MeV(kin.) + D/N: Ekin ≥ 4.5MeV
- SK-II 791 days, Spectrum: 6.5-19.5MeV(kin.) + D/N: Ekin ≥ 7.0MeV
- SK-III 548 days, Spectrum: 4.0-19.5MeV(kin.) + D/N: Ekin ≥ 4.5MeV
- SK-IV 2645 days, Spectrum : 3.5-19.5MeV(kin.) + D/N (1664 days) : Ekin≥4.5MeV Spectrum (until March 2017): Updated from Phys. Rev. D 94, 052010 (2016). SNO Day/Night flux: Updated from PRL 112 (2014) 091805.
- Parameterized analysis (c0,c1,c2,a0,a1) of all SNO phased published in Phys. Rev. C88 (2013) 025501. The same method is applied to both SK and SNO with ao and a1 to LMA expectation.
- Radiochemical (Ga, CI)
 - Ga rate 66.1 ± 3.1 SNU (All Ga global), Phys. Rev. C80 (2009) 015807.
 - Cl rate 2.56 \pm 0.23 SNU, Astrophys. J. 496 (1988) 505.

Borexino

Does NOT include Borexino pp 2014. ⁷Be flux, Phys. Rev. Lett. 107 (2011) 141302. Nature 512 (2014) 383.

KamLAND reactor

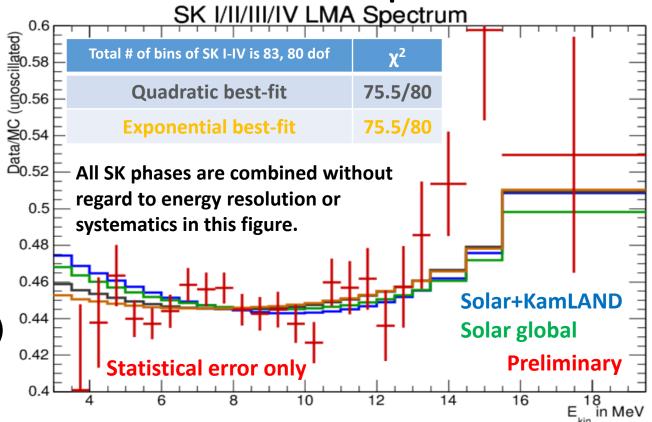
3-flavor analysis , Phys. Rev. D88 (2013) 033001.

⁸B spectrum

Winter 2006, Phys. Rev. C73 (2006) 025503.

SK I-IV combined recoil electron spectrum

SK searches for the "upturn" in its recoil electron energy spectrum.


SK-I: 1496 days ($E \ge 4.5$)

SK-II: **791** days ($E \ge 6.5$)

SK-III: 548 days ($E \ge 4.0$)

SK-IV: 2645 days ($E \ge 3.5$)

Total: 5480 days sample

MC: 5.25×10^6 /cm²/sec (SNO: NC current, Phys. Rev. C88 (2013) 025501.)

The SK recoil electron spectrum is consistent within ~1 σ with the MSW up-turn for the solar global best fit parameters, and marginally consistent within ~2 σ with the MSW up-turn for the solar+KamLAND best fit parameters.

Summary

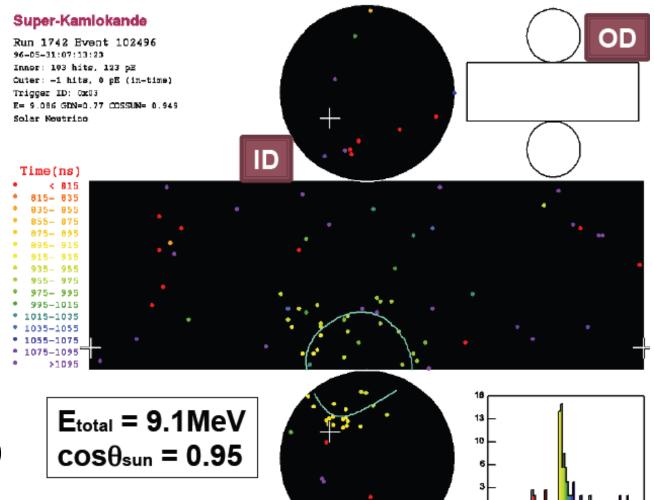
- Super-Kamiokande has taken solar neutrinos for more 20 years.
- Precise solar neutrino flux measurement is performed.
 - SK-IV result: 2.32 ± 0.02 (stat.) ± 0.04 (syst.) [$\times 10^6$ /cm²/sec].
- SK solar neutrino flux measurements agree across all phase.
 - Combined result: 2.355 \pm 0.033 (stat.+syst.) [\times 10⁶/cm²/sec].
 - Fully consistent with a constant solar neutrino flux emitted by the Sun.
 - No correlation with the solar activity cycle is seen.
- Preliminary periodic modulation analysis is performed.
 - Maximum peak at around 9.43 year⁻¹ is not found in SK-IV.
- Recoil electron energy spectrum is consistent with the MSW up-turn.
 - ~1σ for the solar global best-fit parameters
 - \sim 2 σ for the solar+KamLAND best-fit parameters.

Back up

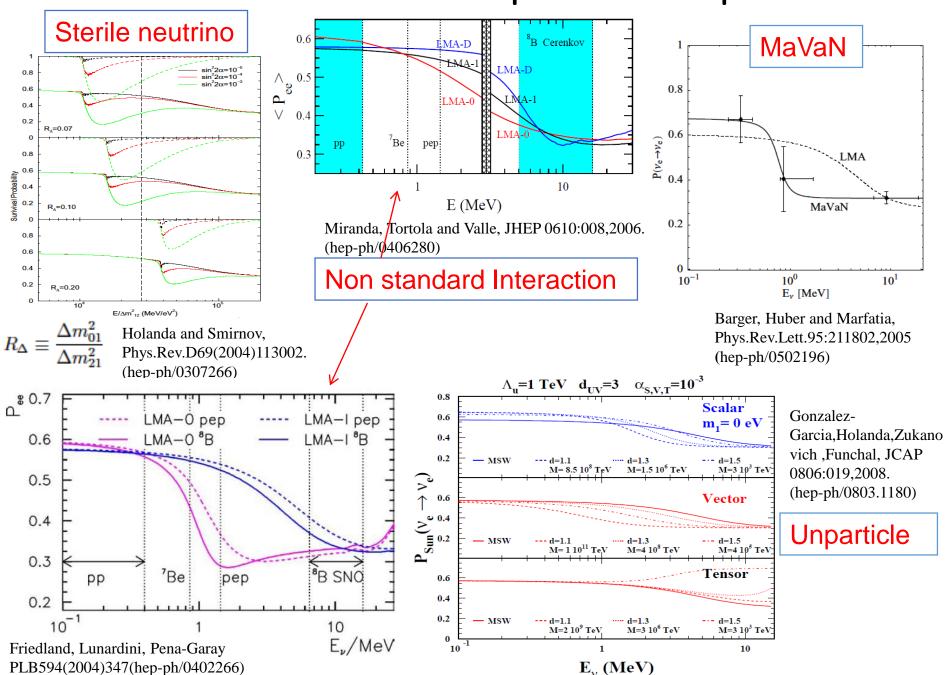
Times (ns)

Typical low energy event in SK

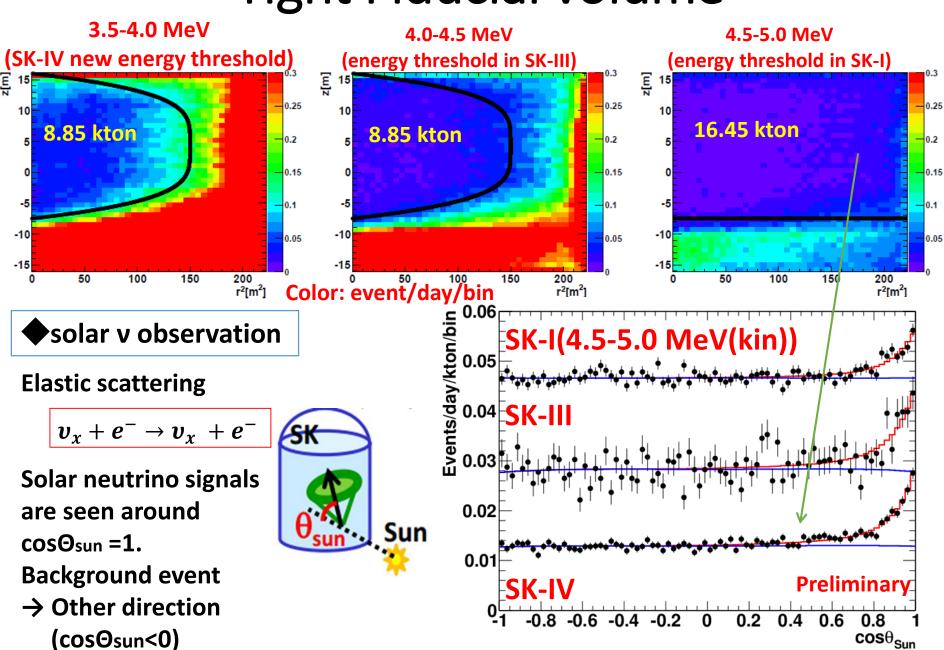
♦How to detect

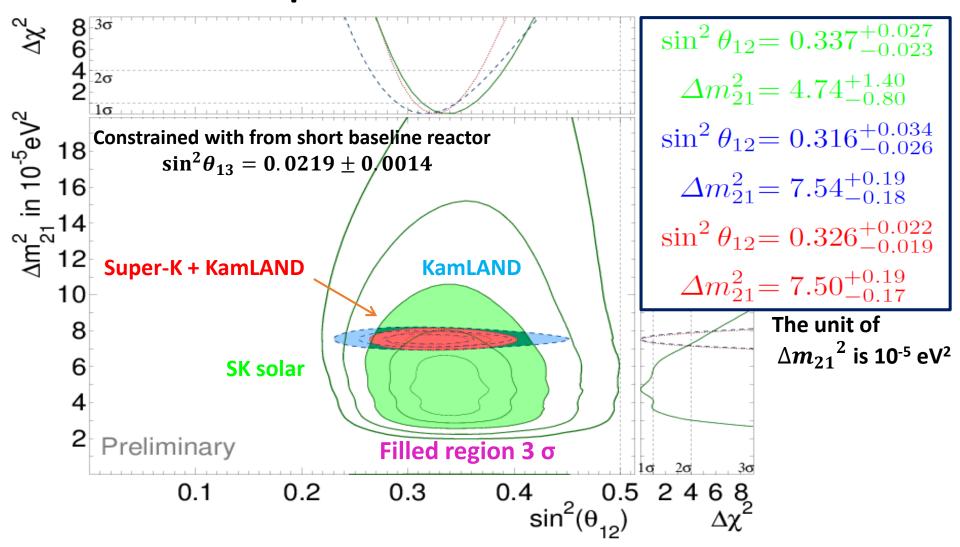

Elastic scattering(ES) reaction is used for solar neutrinos

$$v_x + e^- \rightarrow v_x + e^-$$

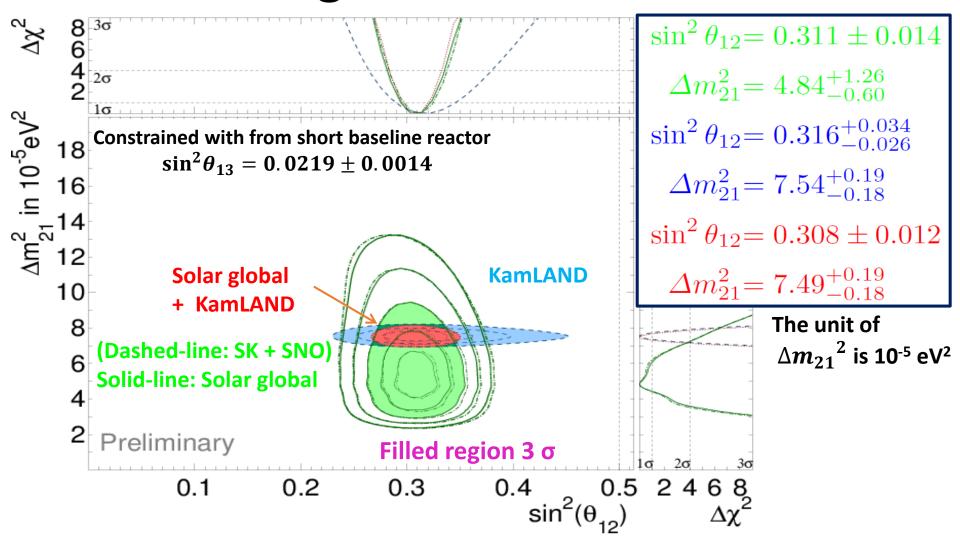

- **◆**Reconstruction
- ◆Timing information→Vertex position
- Ring pattern
 - **→**Direction
- Number of hit PMTs
 - →Energy(~6hits/MeV)
- **◆**Resolutions

Energy: 14 % Vertex: 55 cm Direction: 23°

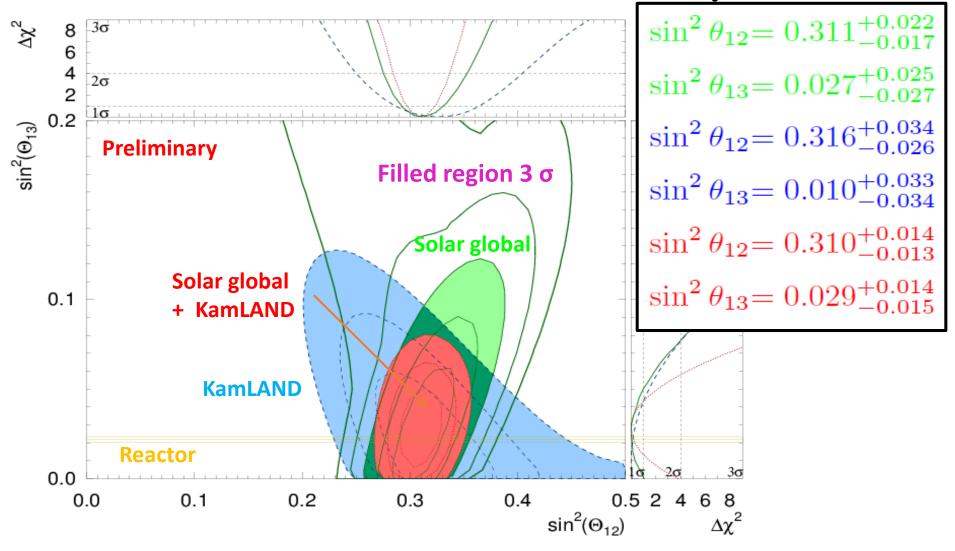

(for E = 9.5 MeV(kin.) electron)


Non-standard models to predict flat spectrum p.16

Tight Fiducial volume



Super-K vs. KamLAND


SK result uniquely selects the Large Mixing Angle MSW region by more than 3 σ . SK significantly contributes to the measurement of the solar angle.

Solar global vs. KamLAND

The SK spectrum and D/N data favor a lower m_{21}^2 value than KamLAND's by more than 2σ and mostly determine this parameter in the solar neutrino oscillation fit.

3-flavor oscillation analysis

 2σ level non-zero θ_{13} is obtained from Solar global + KamLAND. Consistent with the reactor results.