# Dark matter search with the SABRE experiment

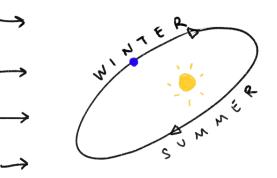
### Giulia D'Imperio\* for the SABRE collaboration

### \*INFN Roma 1



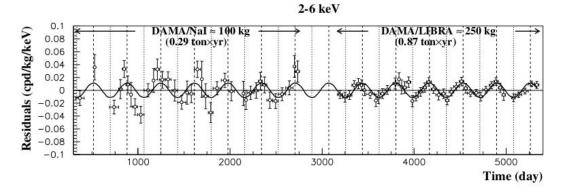
25-07-2017 TAUP 2017 Sudbury, Canada








# Dark matter detection through annual modulation


- WIMP is one of the most studied candidate for Dark Matter
- Standard halo model:
  - spherical DM halo around galaxy solidal to the galactic center WIMP
  - local energy density  $\rho_{x}$ ~0.3 GeV/cm<sup>3</sup>
- Rare and low energy events
  - expected WIMP-nucleons xsec:  $10^{-48} 10^{-40} \text{ cm}^2$  $\rightarrow$  very low expected rate < 1 count/day/kg
  - expected recoil energy is 1-100 keV for a WIMP of mass 10-1000 GeV/c
- Annual modulation of the WIMP flux on Earth
  - Period  $2\pi/\omega = 1$  year
  - $\circ \quad \text{Maximum of modulation at t}_0 \rightarrow \text{ June 2}^{\text{nd}}$
  - modulation signature is independent from the halo model

WIMP rate: 
$$\frac{dR}{dE} pprox S_0(E) + S_m(E) \cos \omega (t-t_0)$$



- Sun velocity ~220 km/s
- WIMP velocity seen from Earth  $\sim$ 220 + 15 cos  $\omega$ (t t<sub>0</sub>) km/s

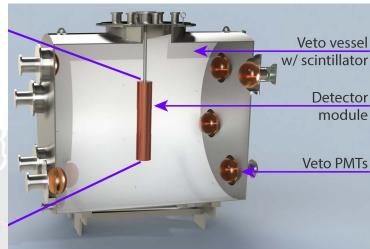
### DAMA/LIBRA experiment at LNGS observes a 9.3 σ annual modulation in the region [2-6]keV<sub>ee</sub>



Still missing an independent measurement with Nal target. → SABRE is a new experiment with Nal detector for annual modulation

# SABRE (Sodium-iodide with Active Background REjection)

### 1. Development of ultra-high purity NaI(TI) crystals


- Ultra high purity Nal powder
- Ultra clean crystal growth method

### 2. Low energy threshold

- High QE Hamamatsu PMTs directly coupled to the crystal
- 3. Passive shielding + active veto
  - Unprecedented background rejection and sensitivity with a Nal(Tl) experiment
- 4. Two identical detectors in northern and southern hemispheres

Reduces any season-related background

### Laboratori Nazionali del Gran Sasso (LNGS), Italy







Stawell Underground Physics Lab (SUPL), Australia

# The SABRE collaboration



• Collaboration: 11 Institutions from Italy, US, UK and Australia





Imperial College London

- Princeton University
- Lawrence Livermore National Laboratory (LLNL)
- Pacific Northwest National Laboratory (PNNL)

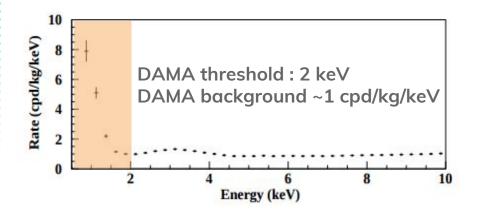
- INFN Laboratori Nazionali del Gran Sasso
- Sapienza Università di Roma & INFN
- Università degli Studi di Milano & INFN



- Australian National University
- University of Adelaide
- University of Melbourne
- Swinburne University of Technology

# Low background + low energy threshold

- Main background is due to crystal radioactivity: <sup>40</sup>K, <sup>87</sup>Rb, <sup>232</sup>Th, <sup>238</sup>U
  - assumption confirmed by Monte Carlo simulations
- Ultra pure Nal(Tl) crystals
  - collaboration between Princeton and Sigma-Aldrich
  - low contamination Astrograde powder

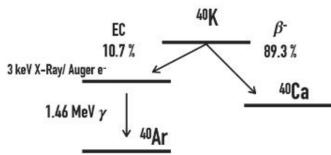

| Element | Sigma-<br>Aldrich [ppb]       | DAMA<br>Powder [ppb] | DAMA<br>Crystal [ppb]     |
|---------|-------------------------------|----------------------|---------------------------|
| K       | 3.5 (18)*                     | 100                  | ~13                       |
| Rb      | 0.2                           | n.a.                 | < 0.35                    |
| U       | < 1.7 (< 10 <sup>-3</sup> )** | $\sim 0.02$          | 0.5 -7.5×10 <sup>-3</sup> |
| Th      | $< 0.5 \ (< 10^{-3})^{**}$    | $\sim 0.02$          | $0.7 - 10 \times 10^{-3}$ |

\* Independent measurement \*\* Preliminary measurement at PNNL; full validation needed. Bernabei et al., NIM A592 (2008) 297-315

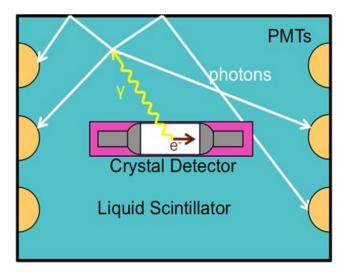


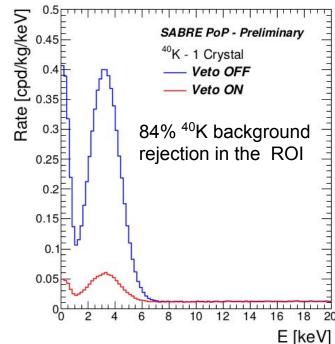
(DAMA crystal 13 ppb)

- Growth procedure tested
- High-purity
  full-scale crystal
  in production



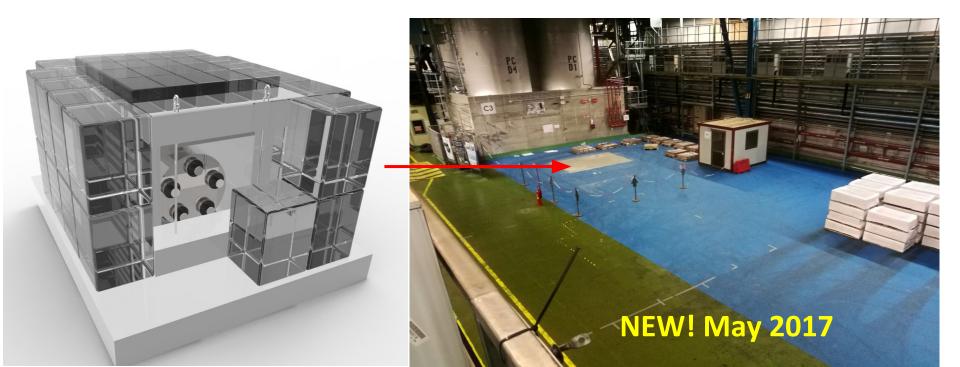

SABRE aims to achieve low background and low threshold:


- Hamamatsu R11065-20 3" PMTs: high quantum efficiency and light yield
- direct PMT-Crystal coupling
- Low radioactivity: ~1 mBq for U, Th; < 1 mBq for Co; <10 mBq for K




- Crystals surrounded by a **liquid** scintillator detector:
  - Reject external+intrinsic backgrounds (radioactive and cosmic-induced processes) which deposit energy (>100 keV) in the liquid scintillator
  - 10 PMTs 8" Hamamatsu R5912



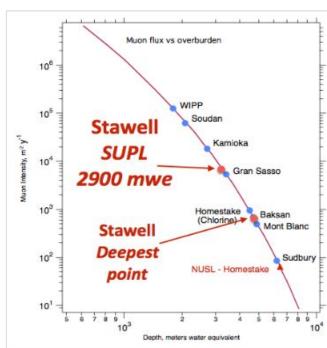

- Additional **passive shielding** against external backgrounds
  - **Bottom**: 15 cm **Lead** + 10 cm **PE**
  - Sides: 40 cm PE + 90 cm water
  - Top:10 cm PE + 2cm Stainless Steel plate
    + 80 cm water)



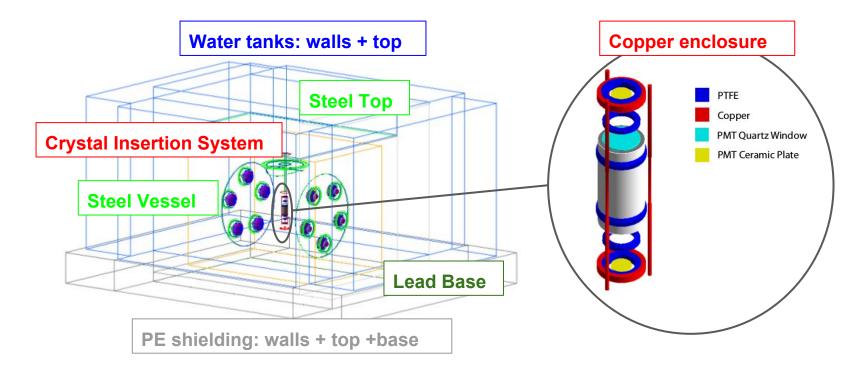


# Status of SABRE Proof of Principle @LNGS

- First Phase : Proof of Principle (PoP)@LNGS:
  - Setup with **1 crystal of 5kg** inside liquid scintillator (~ **2 tons PC + PPO** 3 g/l)
  - Goals: measure **crystal background, veto efficiency** and **validate SABRE concept**
- Steel vessel with 10 PMTs in a temporary area in Hall B
  - $\circ$  done tests of veto PMTs and DAQ
  - $\circ$  ~ run with water planned before moving to Hall C ~
- Final location Hall C:
  - refurbishment completed + lead shielding installed
  - $\circ$  shielding completion ~end of summer 2017



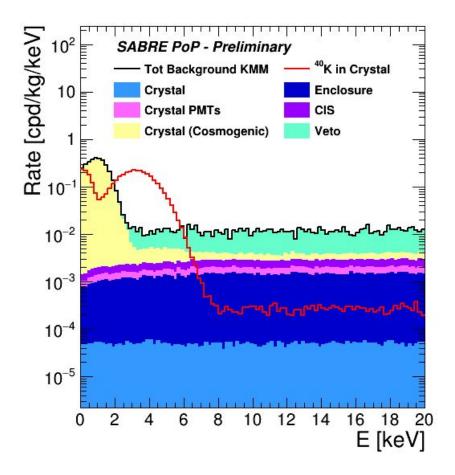

# SUPL laboratories in Australia


- Hosted in the Stawell Gold Mine, Victoria, Australia
- Construction to start in second half of 2017
- Depth 1025 m (2900 m w.e.)
- 34.5 m X 10 m clean room and radon free area
- Will host SABRE and other experiments








# Full background simulation of the PoP



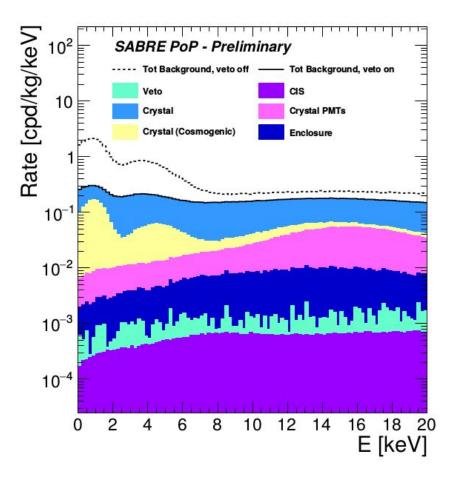
- GEANT4 based code with detailed geometry implementation
  - External shielding: water + PE + Pb + Steel
  - Steel vessel filled with liquid scintillator + 10 PMTs 8"
  - Crystal insertion system: copper tube + steel bar
  - Copper enclosure with crystal and 2 PMTs 3"
- Contaminations from available **measurements** or **literature**
- **Comparison with previous independent simulations** gives results in good agreement for the major bkg contributions

## K measurement

- **Target** <sup>40</sup>K **electron capture** (3 keV auger  $e^-$  + 1.46 MeV  $\gamma$ ) in the crystal and other processes with large energy deposits in the scintillator
- Coincidences Cystal+Scintillator allow to study other intrinsic BKGs that give a energy release in the scintillator



 $E(Scintillator) \in [1280,1640] \text{ keV}$  $E(Crystal) \in [2,4] \text{ keV}$ 


|                         | Rate KMM            |
|-------------------------|---------------------|
|                         | [cpd/kg/keV]        |
| Veto                    | $6.2 \cdot 10^{-3}$ |
| CIS(*)                  | $7.7\cdot 10^{-4}$  |
| Crystal                 | $5.1 \cdot 10^{-5}$ |
| Crystal Cosmogenic(*)   | $1.8\cdot 10^{-2}$  |
| CrystalPMTs             | $4.3 \cdot 10^{-4}$ |
| Enclosure(*)            | $1.3 \cdot 10^{-3}$ |
| Total                   | $2.7 \cdot 10^{-2}$ |
| Crystal <sup>40</sup> K | $1.9\cdot 10^{-1}$  |

(\*) after 60 days underground

 Largest bkg contribution from <sup>22</sup>Na mostly below threshold of 2 keV

# **Background for Dark Matter detection**

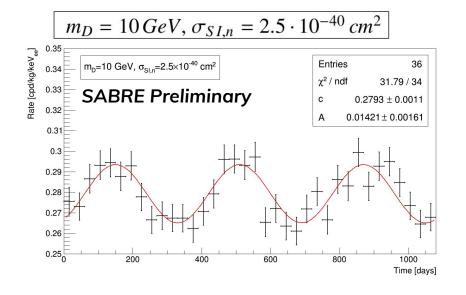
Test the **active veto rejection power** of the liquid scintillator system and the **measure background level** after veto in the crystal



veto: E(Scintillator) > 100 keV E(Crystal )  $\in$  [2,6] keV

|                       | Rate, veto OFF      | Rate, veto ON       |
|-----------------------|---------------------|---------------------|
|                       | [cpd/kg/keV]        | [cpd/kg/keV]        |
| Veto                  | $3.0 \cdot 10^{-2}$ | $5.7 \cdot 10^{-4}$ |
| CIS(*)                | $3.7 \cdot 10^{-3}$ | $4.6 \cdot 10^{-4}$ |
| Crystal               | $3.5\cdot10^{-1}$   | $1.5\cdot 10^{-1}$  |
| Crystal Cosmogenic(*) | $3.0\cdot10^{-1}$   | $3.9\cdot10^{-2}$   |
| CrystalPMTs           | $1.3 \cdot 10^{-2}$ | $8.3 \cdot 10^{-3}$ |
| Enclosure(*)          | $9.5 \cdot 10^{-3}$ | $3.6 \cdot 10^{-3}$ |
| Total                 | $7.1 \cdot 10^{-1}$ | $2.0\cdot10^{-1}$   |

(\*) after 180 days underground


- Expected BKG 0.2 cpd/kg/keV in the ROI
- Total veto rejection of internal bkg: factor 3.5
- Crystal is the main source of background
  - contaminations in the crystal measured with ICP-MS
  - $\circ$  dominant bkg  $^{40}\text{K} \rightarrow$  measured independently with ICP-MS at Seastar and PNNL
  - other bkg do not change the overall picture
- Next step  $\rightarrow$  simulate full-scale experiment<sup>11</sup>


# Expected sensitivity

Preliminary study of SABRE sensitivity using the following assumptions:

- DM standard halo model arxiv:1209.3339
- region of interest [2-6] keV<sub>ee</sub>
- **50 kg** of ultrapure Nal(Tl) crystals (black curve)
- 3 years exposure
- Bkg from simulation ~0.2 cpd/kg/keV
- quenching factors from DAMA
  - $\circ$  QF(Na) = 0.3, QF(I)=0.09
  - new measurements indicate that Na QF is significantly lower
- detector efficiency/resolution not yet included

#### 3 years x 50 kg exposure sufficient to confirm or exclude the DAMA modulation signal





# Conclusions

- Verification of the DAMA/LIBRA results with high sensitivity
  - **High purity** crystals
  - Low energy threshold
  - Active LS Veto
  - 2 twin experiment in **both hemispheres**
- Proof of principle (PoP) detector is being deployed @ LNGS
  - Preliminary tests on the DAQ, trigger logic, veto PMTs ongoing
  - Validation of the crystals and veto efficiency
  - Data taking in the second half of 2017
- Monte Carlo Simulations
  - BKG in DMM ~0.20 cpd/kg/keV
  - active veto rejection factor ~3.5
  - coincidence mode will allow measurement of potassium and other intrinsic BKGs that give energy release in the LS
- Full Scale experiment under design
  - Confirm/Reject DAMA/LIBRA modulation before 3 years



# **Backup Slides**

| Isotope            | Activity/Concentration |           | Ref.                           |  |  |
|--------------------|------------------------|-----------|--------------------------------|--|--|
|                    | Intrinsic              |           |                                |  |  |
| nat K              | 10                     | ppb       | SABRE, in preparation          |  |  |
| <sup>238</sup> U   | 1                      | ppt       |                                |  |  |
| <sup>232</sup> Th  | 1                      | ppt       | SABRE: <u>arxiv:1601.05307</u> |  |  |
| nat Rb             | 0.1                    | ppb       |                                |  |  |
| <sup>210</sup> Pb  | 0.03 n                 | nBq/kg    | DAMA: <u>arxiv:0804.2738</u>   |  |  |
|                    |                        | Cosmogen  | nic                            |  |  |
| Isotope            | Activity               | Half life | Ref.                           |  |  |
|                    | [mBq/kg]               | [days]    |                                |  |  |
| <sup>22</sup> Na   | 0.80                   | 949       |                                |  |  |
| <sup>126</sup> I   | 4.30                   | 13        | LNGS: M. Laubenstein           |  |  |
| <sup>24</sup> Na   | 2.60e-04               | 0.625     | <b></b>                        |  |  |
| <sup>129</sup> I   | 0.95                   | -         | DAMA: <u>arxiv:0804.2738</u>   |  |  |
| <sup>121</sup> Te  | 1.27                   | 17        |                                |  |  |
| <sup>125</sup> I   | 7.20                   | 59        |                                |  |  |
| <sup>121</sup> mTe | 0.89                   | 154       | ANAIS: arXiv:1604.05587        |  |  |
| <sup>123</sup> mTe | 1.17                   | 119       |                                |  |  |
| <sup>125</sup> mTe | 0.92                   | 57        |                                |  |  |
| <sup>127</sup> mTe | 0.37                   | 107       |                                |  |  |

### **PFTE wrapping**

| Isotope           | Activity/Concentration |
|-------------------|------------------------|
| <sup>40</sup> K   | 3.1 mBq/kg             |
| <sup>238</sup> U  | 0.25 mBq/kg            |
| <sup>232</sup> Th | 0.5 mBq/kg             |

XENON: arxiv:1207.5988

### Copper

| Isotope           | Activity/Concentration |
|-------------------|------------------------|
| <sup>40</sup> K   | 0.7 mBq/kg             |
| <sup>238</sup> U  | 0.065 mBq/kg           |
| <sup>232</sup> Th | 0.002 mBq/kg           |

### CUORE-0: Eur. Phys. J. C

### **Copper activation**

| Isotope          | T1/2 [days] | Activity [µBq/kg] |
|------------------|-------------|-------------------|
| <sup>60</sup> Co | 1925        | 340               |
| <sup>58</sup> Co | 71          | 798               |
| <sup>57</sup> Co | 272         | 519               |
| <sup>56</sup> Co | 77          | 108               |
| <sup>54</sup> Mn | 312         | 154               |
| <sup>46</sup> Sc | 84          | 27                |
| <sup>59</sup> Fe | 44          | 47                |
| $^{48}V$         | 16          | 39                |

### Crystal PMTs Hamamatsu R11410 3"

| PMT component       | Isotope           | Activity[mBq/PMT] |
|---------------------|-------------------|-------------------|
| Kovar Body          | <sup>40</sup> K   | < 0.99            |
| Kovar Body          | <sup>60</sup> Co  | 7e-02             |
| Kovar Body          | <sup>238</sup> U  | < 0.095           |
| Kovar Body          | <sup>226</sup> Ra | <0.26             |
| Kovar Body          | <sup>232</sup> Th | < 0.0032          |
| Kovar Body          | <sup>228</sup> Th | < 0.34            |
| Quartz Window       | <sup>40</sup> K   | <8.1e-02          |
| Quartz Window       | <sup>60</sup> Co  | <4.5e-03          |
| Quartz Window       | <sup>238</sup> U  | < 0.33            |
| Quartz Window       | <sup>226</sup> Ra | 0.036             |
| Quartz Window       | <sup>232</sup> Th | <1.2e-02          |
| Quartz Window       | <sup>228</sup> Th | <1.2e-02          |
| Ceramic Feedthrough | <sup>40</sup> K   | 1.1               |
| Ceramic Feedthrough | <sup>60</sup> Co  | < 0.02            |
| Ceramic Feedthrough | <sup>235</sup> U  | 0.11              |
| Ceramic Feedthrough | <sup>238</sup> U  | 2.4               |
| Ceramic Feedthrough | <sup>226</sup> Ra | 0.26              |
| Ceramic Feedthrough | <sup>232</sup> Th | 0.23              |
| Ceramic Feedthrough | <sup>228</sup> Th | 0.11              |

XENON1T : Eur. Phys. J. C

XENON Eur. Phys. J. C

### PFTE

| Isotope           | Activity/Concentration [mBq/kg] |
|-------------------|---------------------------------|
| <sup>40</sup> K   | <2.25                           |
| <sup>238</sup> U  | < 0.31                          |
| <sup>232</sup> Th | <0.16                           |
| <sup>60</sup> Co  | < 0.11                          |
| <sup>137</sup> Cs | < 0.13                          |

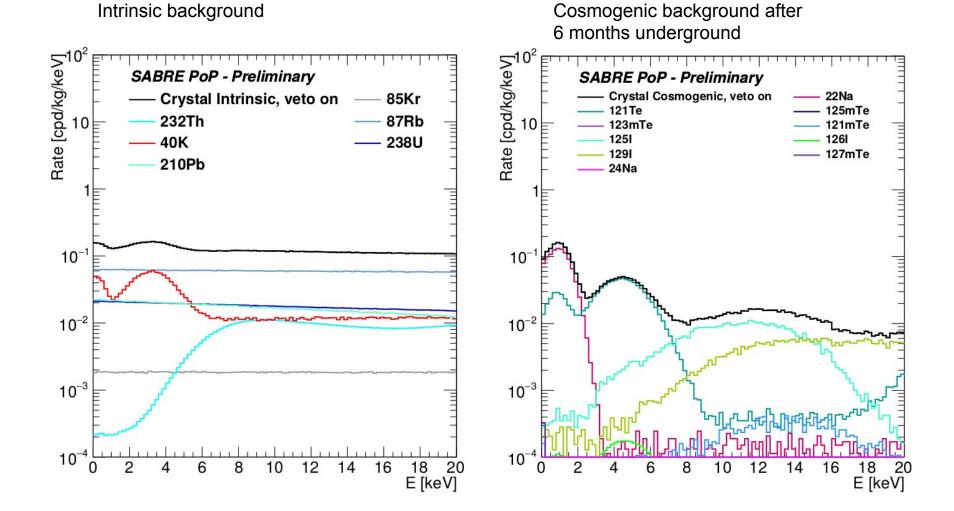
XENON100: Astroparticle Physics

### **Stainless steel**

| Lot Number | Thickness [inch] | U [ppb] | Th [ppb] | K [ppb] |
|------------|------------------|---------|----------|---------|
| S536       | 3/8              | 0.3     | < 0.1    | 4       |
| T915       | 1/4              | 0.04    | 0.02     | <1      |

SABRE: GDMS method

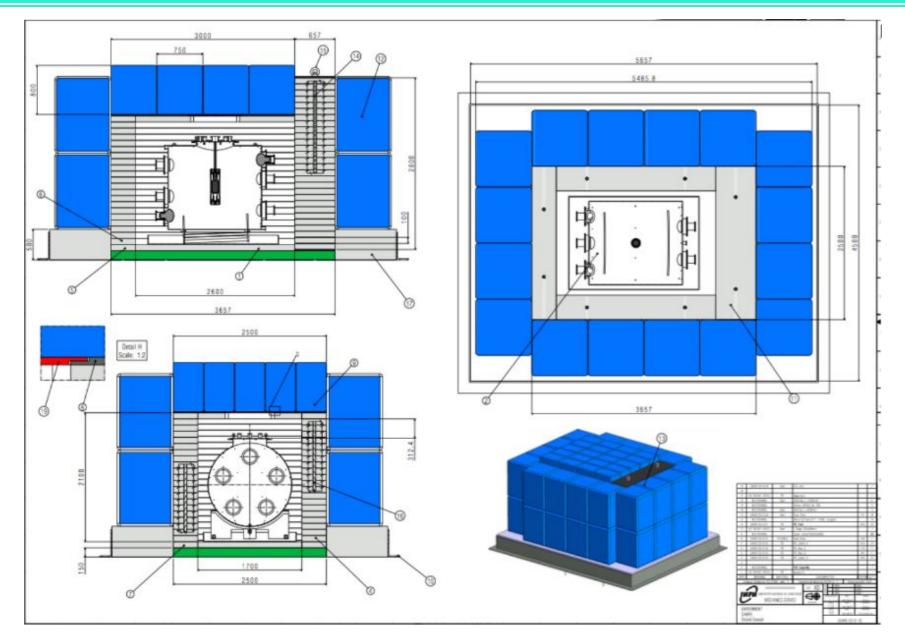
### Veto PMTs Hamamatsu R5912 8"


| Isotope            | <sup>238</sup> U | <sup>232</sup> Th | <sup>235</sup> U | <sup>40</sup> K |
|--------------------|------------------|-------------------|------------------|-----------------|
| Activity [mBq/PMT] | 883              | 110               | 41               | 649             |

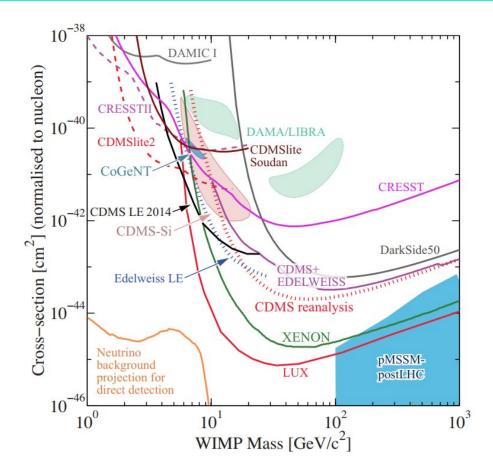
DarkSide-50: arXiv:1512.07896

### Liquid scintillator

| Isotope           | Activity [mBq/kg]     |
|-------------------|-----------------------|
| <sup>40</sup> K   | $3.5 \cdot 10^{-7}$   |
| <sup>238</sup> U  | $< 1.2 \cdot 10^{-6}$ |
| <sup>232</sup> Th | $< 1.2 \cdot 10^{-6}$ |
| <sup>210</sup> Pb | $1.7 \cdot 10^{-6}$   |
| <sup>210</sup> Bi | $1.7 \cdot 10^{-6}$   |
| <sup>7</sup> Be   | $< 1.2 \cdot 10^{-6}$ |
| <sup>14</sup> C   | $4.1 \cdot 10^{-1}$   |
| <sup>39</sup> Ar  | $3.5 \cdot 10^{-6}$   |
| <sup>85</sup> Kr  | $3.5 \cdot 10^{-7}$   |


Borexino: Nucl. Instr. & Meth.




# Crystal backgrounds in DMM

| Isotope                   | Rate, veto OFF      | Rate, veto ON       |
|---------------------------|---------------------|---------------------|
| -                         | [cpd/kg/keV]        | [cpd/kg/keV]        |
| Intrinsic                 |                     |                     |
| <sup>40</sup> K           | $2.5\cdot10^{-1}$   | $4.0 \cdot 10^{-2}$ |
| <sup>238</sup> U          | $2.0\cdot 10^{-2}$  | $2.0\cdot10^{-2}$   |
| <sup>232</sup> Th         | $1.9 \cdot 10^{-3}$ | $1.7 \cdot 10^{-3}$ |
| <sup>87</sup> Rb          | $6.1 \cdot 10^{-2}$ | $6.1 \cdot 10^{-2}$ |
| <sup>210</sup> Pb         | $2.0\cdot10^{-2}$   | $2.0 \cdot 10^{-2}$ |
| Tot Intrinsic             | $3.5 \cdot 10^{-1}$ | $1.5 \cdot 10^{-1}$ |
| Cosmogenic                |                     |                     |
| <sup>22</sup> Na          | $3.6 \cdot 10^{-2}$ | $2.7 \cdot 10^{-3}$ |
| <sup>121</sup> Te         | $2.6\cdot 10^{-1}$  | $3.3 \cdot 10^{-2}$ |
| <sup>125</sup> Te         | $5.3 \cdot 10^{-6}$ | $5.1 \cdot 10^{-6}$ |
| <sup>123m</sup> Te        | $7.6 \cdot 10^{-5}$ | $5.1 \cdot 10^{-5}$ |
| <sup>121<i>m</i></sup> Te | $1.3 \cdot 10^{-4}$ | $7.0 \cdot 10^{-5}$ |
| $^{125}I$                 | $1.8 \cdot 10^{-3}$ | $1.8 \cdot 10^{-3}$ |
| $^{126}$ I                | $2.0\cdot 10^{-4}$  | $1.3 \cdot 10^{-4}$ |
| <sup>129</sup> I          | $3.4 \cdot 10^{-4}$ | $3.4 \cdot 10^{-4}$ |
| $^{127m}$ Te              | $5.0\cdot10^{-5}$   | $4.9 \cdot 10^{-5}$ |
| <sup>24</sup> Na          | -                   | -                   |
| Tot Cosmogenic            | $3.0 \cdot 10^{-1}$ | $3.9 \cdot 10^{-2}$ |

# PoP shielding design



## Dark matter direct search panorama



- DAMA/LIBRA observes a modulation using 250 kg of Nal detector
- When interpreted in the WIMP framework (model dependent), tension with other results from experiments using different targets (XENON, LUX, CDMS, etc...)