First results of CUPID-0

Scintillating Bolometers: rudiments of operation

Operating Temperatures for *massive* detectors: 10÷30 mK

A Bolometric Light Detector is a fully active a particle detector

The time response of a BLD is the same of a standard bolometer O (ms)

The QE of a BLD could, probably, be close to 1 but it is rather difficult to measure it

Lucifer

LUCIFER Low-background Underground Cryogenics Installation For Elusive Rates

isotope:

82**Se** , 100**Mo** , 116**Cd**

material:

ZnSe , $ZnMoO_4$, $CdWO_4$

technique:

scintillating bolmeter

https://web.infn.it/lucifer/

The Lucifer Grant (2010-2015) was dedicated to R&D to be finalized in one enriched demonstrator made of enriched scintillating crystals in the order of few kg of enriched material. During the R&D several crystals containing 82 Se , 100 Mo , 116 Cd were tested an also the tiny Cherenkov light from a (non *scintillating*) TeO₂ was measured.

Lucifer

LUCIFER Low-background Underground Cryogenics Installation For Elusive Rates

Choice induced by non availability on the market (2012) of ¹⁰⁰Mo and ¹¹⁶Cd

isotope:

material:

technique:

82**Se** , 100Mo , 116Cd

ZnSe $\int ZnMoO_4$, $CdWO_4$

scintillating bolmeter

From 2016 this activity is funded by INFN under the INFN-CUPID Project. For this reason, LUCIFER is called now CUPID-0 the first demonstrator in view of CUPID.

LUCIFER: the forerunner of CUPID

Cuore Upgrade with Particle IDentification

R&D towards CUPID: <u>arXiv:1504.03612</u> CUPID : <u>arXiv:1504.03599</u>

INFN-CUPID: CUPID-0 Zn82Se

CUPID-0 will be the first enriched bolometer $\beta\beta$ experiment that will demonstrate the background rejection achievable for hybrid $\beta\beta$ scintillating bolometers

Bolometric Light Detectors

In case of scintillating crystals, even in case of "bad" scintillators (Light Yield ≈ 0.05 %), the scintillation light at $Q_{\beta\beta}$ results of the order O(1 keV). This amount of energy release can be "easily" readout by standard thermistor-based bolometers. The light detector is a Ge thin wafer equipped with a small thermistor

Ø=44.5 mm, h=0.175 mm

R&D mounting setup JW Beeman *et al*. JINST 8(2013) P07021

DR Artusa et al. Eur. Phys. J. C (2016) 76

These devices are calibrated through an Ionizing ⁵⁵Fe sources

55Fe	Entries Mean RMS Integral Z² / ndf A_exp b_exp A mean σ BRRatio PosRatio BRRatio2	2989 5.968 0.2059 2989 155.5/58 3377±1342.3 132±0.68 155.6±3.7 5.903±0.002 0.07385±0.002 0.9981±0.0000 0.9981±0.0000 0.1769±0.0000
5.9	PosRatio2 6.2 6.4	5 6.6 6.8 Energy (keV)

	$RMS_{baseline}$	$ au_r$	$ au_d$
	[eV]	[ms]	[ms]
LD Top-1	32.5 ± 0.5	1.68	5.15
LD Top-2	39.3 ± 0.7	1.91	5.75
LD Top-3	57.1 ± 0.8	1.71	3.41
LD Bot-1	43.9 ± 0.7	1.83	5.45
LD Top-4	37.8 ± 0.6	1.66	5.23
LD Top-5	112.2 ± 2.0	1.81	9.17
LD Top-6	65.7 ± 1.0	1.88	10.96
LD Bot-6	46.1 ± 0.7	1.82	5.39

CUPID-0 Mechanical structure

The mechanical configuration of the CUPID-0 tower was designed by the LNGS Mechanical workshop and 3D printing service. *Driving Idea: minimize frame mass, type of pieces, use only certified (large slab) copper*

ZnSe 78 % Cu 22% PTFE 0.1%

CUPID-0 Construction

The detectors were assembled in the Low Rn content Dark Side clean room @LNGS

The fully mounted CUPID-0 detector

CUPID-0: Location and main features

24 **Zn**⁸²**Se** bolometers, for a total mass \approx **5.1 kg of** ⁸²**Se** 2 ZnSe bolometer \approx 400 g each, not enriched in ⁸²Se $Q_{88}(^{82}Se) = 2998 \text{ keV}$

Light detectors high purity Ge wafers with antireflecting coating Thermal sensors made with NTD thermistors

Detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat

Total active mass of the detector ~10.5 kg

CUPID-0 is installed in the *Old* Mibeta-Cuoricino-CUORE-0 dilution refrigerator placed in the Hall A of LNGS Some upgrades were done on the cryogenic system:

- New double pendulum system to reduce vibrational noise
- Upgrade of the radon abatement system to reduce ²¹⁴Bi
- Improvements in the injection line of the mixture
- New cryostat wiring to measure up to 120 detectors
- A completely new FE electronics

Science RUN 0 - Collected statistics

Physics • y calibration

Tests/Refills

Neutron calib

SW problems

The **SR-0** enabled us to fix several bugs of electronic and SW. After the stop we implemented few major changes.

Channel ID

The **SR-1** started 3 June 2017 we presently have (Physics+Calibrations) > 93 %

Zn82Se Energy resolution

It is clear that the abrupt difference between the baseline resolution of the detector and the effective energy resolution @2615 keV is due to the *non perfect quality* of the crystals

Energy resolutions are still (slightly) improving...

Light Detectors at first glance

LDs work extremely good.

- ➤ Presently we cannot give the actual performance since, for obvious reasons, no ⁵⁵Fe sources where mounted on CUPID-0.
- ➤ Nevertheless the performances can be inferred by roughly looking at the S/N ratio at the scintillation signal @2615 keV: it is very good for all the detectors.
- Moreover, the discrimination factor evaluated on internal α-lines is completely satisfying

Total Background Spectrum, no cuts

Total Background Spectrum, Anticoincidence and a-cut

Cut efficiency of the order of ~93 %. Will slightly increase after optimization of the coincidence jitter time (in progress).

a-delayed coincidence- Internal background

A not negligible background is induced by internal contamination belonging to the 232 Th chain, through the decay of 208 Tl with Q-Value of 5 MeV. The decay is preceded ($T_{1/2} \cong 3$ min) by the α -decay of 212 Bi, with Q-value 6.2 MeV.

Final preliminary background Sum Spectrum

Total cut efficiency of SR-0 is 87 % (evaluated at ⁶⁵Zn -1135 keV). We are working to reach a cut efficiency >90%

Conclusions

- ✓ The α -rejection technique works at best
- ✓ The SR-0 shows the extremely low background in the 2v region
- ✓ The first background in the 0vDBD 82Se is promising.
- ✓ The first reliable evaluation of the BI will be released as soon as our background model will be ready and the statistics has increased at least by a factor three (September)

The CUPID-0 collaboration

BACKUPS

The final choice of LUCIFER

The "final" decision of the LUCIFER detector was due, finally to the market availability of enriched material. At that time (2010-2011) we didn't succeed to get any kind of feedback from Russia.

The only "feasible" producer was, therefore, URENCO in Holland.

URENCO did not have any kind of production line of Mo-isotopes (due to the not- easy to handle- gas phase of Mo isotopes), so that **the only possibility was** ⁸²Se (that is enriched trough the *standard* Hexafluoride technique)

The contract for the delivery of 10+5 kg 82 Se was signed in mid 2011. The price for the production was fixed at 70kEuro /kg @> 95 % i.a.

The ⁸²Se production went on rather smooth. After the delivery of the first 5 kg, we recognized a trace contamination of the enriched metal beads both in U and Th.

URENCO therefore developed in 2014 **a small vacuum distillation set-up** to decrease the contamination (also of Na and S used for the ⁸²SeF₆ to ⁸²Se metal conversion)

	Se(<u>Enr</u> .)	Se(<u>enr</u> -Dist.)	Se(<u>enr</u> -Dist.)	Zn (nat)	Zn (nat)
	[mBq/kg]	[mBq/kg]	[g/g]	[mBq/kg]	[g/g]
²³⁸ U / ²²⁶ Ra	<0.41	< 0.11	< 9.0 10-12	< 0.066	< 5.4 10 ⁻¹²
²³² Th / ²²⁸ Th	1.4 ± 0.2	< 0.11	< 2.6 10 ⁻¹¹	< 0.036	< 8.9 10-12
⁴⁰ K	3 ± 1	< 0.99	< 3.2 10-8	< 0.38	< 1.2 10-8

Background consideration: the "old" cryostat

The crystals were polished in the Low Rn Dark Side Clean Room @LNGS

I. Dafinei et al, J of Crystal growth 475 (2017) 158-170)

Surface Polishing - Effects on Radioactivity

Background spectrum of three Zn⁸²Se crystals before and after the surface polishing with Ultrapure SiO₂ powder

Surface and Bulk contaminations

Environmental "underground" Background: ²³⁸U and ²³²Th trace contaminations

ZnSe crystals and α discrimination

ZnSe crystals shows an "inverse" QF, i.e. α -particles scintillate more than β/γ 's (C. Arnaboldi *et al.*, Astrop. Phys. **34**(2011)

The α -induced background is recognized through two independent measurements: 1) the decay time of the scintillating signal 2) the different scintillation yield between α and γ/β particles (the "usual" light Vs Heat scatter plot)

TeO2... Not TeO2... This is the problem !!!

Cons

- \checkmark Q₈₈ **below** 2516 keV
- α and srface ID needs extremely performing technologies
- ✓ Crystals yield is presently low (30%)
- √ Not commercial crystals
- ✓ larger enrichment price
- not yet proved crystal growth reproducibility (demonstrator)