

Low-mass WIMP searches with EDELWEISS

EDELWEISS-III: Performance, results, background model EDELWEISS-LT: Prospects for ~GeV scale masses, first calibrations EDELWEISS-DMB8: Prospects for the ⁸B region

> Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3)

EDELWEISS @ TAUP2017

The EDELWEISS-III Experiment

- Direct detection of WIMPs, germanium target
- 20 kg Ge total, 870g units
- Ionization + Heat
- Simple & robust design
 - Important for scalability to large arrays
 - Initially designed for >20 GeV WIMPs and ~3000 kgd
 - Extended down to 5 GeV given achieved resolutions

Laboratoire Souterrain de Modane

Deepest in Europe : 5 μ/m²/day

EDELWEISS Setup

- Clean room + deradonized air
 Rn monitoring down to few mBg/m³
- Active muon veto (>98% coverage)
- External (50 cm) + internal polyethylene shielding
 Thermal neutron monitoring with ³He detector
- Lead shielding (20 cm, incl. 2 cm Roman lead)
- Selection of radiopure material
- Cryostat can host up to 40 kg detector, at 18 mK

Performance of the EDELWEISS-III experiment for direct dark matter searches (arXiv: 1706.01070)

July 24th, 2017

EDELWEISS @ TAUP2017

Fully InterDigitized electrode design

- ~870g detectors (φ=70 h=40 mm)
- 2 GeNTDs heat sensor per detector
- Electrodes: concentric Al rings
 (2 mm spacing) covering all faces
- XeF₂ surface treatment to ensure low leakage current (<1 fA) between adjacent electrodes

J Low Temp Phys (2014) 176: 182-187

Surface event rejection

Phys Lett B 681 (2009) 305-309

- Bulk event: charges collected by C₁ and C₂: V₁ and V₂ act as veto
- Surface events: charges collected by either C₁V₁ or C₂V₂

Nuclear recoil calibration + discrimination

Gamma rejection & Surface rejection

- Rejection tested with >5000 kgd equivalent samples [arXiv:1706.01070]
- γ rejection factor: < 2.5 x 10⁻⁶
- Surface evts rejection (²¹⁰Pb+²¹⁰Bi β , ²¹⁰Po α , ²⁰⁶Pb recoils): < 4 x 10⁻⁵

EDELWEISS @ TAUP2017

EDELWEISS-III 3000 kgd data set

161 days of physics data with 24 FIDs (2014-2015)

 24 FID with good resolutions and threshold < 5 keV_{ee} (performance studies, coincidences)

- 19 FID with < 2 keV_{ee} (used for study of cosmogenics + ³H, etc.)
- 8 lowest threshold FIDs used for low-mass WIMP search

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Data-driven background models based on sidebands

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Low-Mass analysis

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Improvement by x20 to x150 between 7 and 10
 GeV wrt EDELWEISS-II
- Limited by heat-only background: *identification* and rejection using the σ=230 eV resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low thresholds

Prospects for GeV-range masses

 [ArXiv:1707.04308]: Complete study based on present measured backgrounds and resolutions vs possible improvements

- Use of Luke-Neganov boost to lower thresholds (up to 100V bias) Improve heat resolution $\sigma_{heat} = 500 \text{ eV} \rightarrow 100 \text{ eV}$ (x5 gain in sensitivity already achieved on 200 g detectors)
- Reduction x100 of heat-only background
- 4. Improve ionization resolution $\sigma_{ion} = 200 \text{ eV}_{ee} \rightarrow 100/50 \text{ eV}_{ee}$

Also: effect of improved neutron/ gamma background (+ increased mass) in the environment planned for SuperCDMS at SNOLAB

EDELWEISS-LT: Luke-Neganov boost

Heat thresholds can be improved by applying larger bias voltages

- Heat signal boosted by Neganov-Luke effect (~Joule heating, factor $[1+V_{hias}/3]$)
- Loss of ionization-based bkg discrimination: method benefits low-mass searches only \rightarrow 10⁻⁴¹ cm² with 500 kgd and current bkgs
- ✓ 100V bias already achieved
- ✓ Observe nucl. recoils down to ~0.1 keV_{ee}
- First WIMP Data@100V analysis underway

July 24th, 2017

1 1 1 1 1 1 1

FWHM (keV_{ee})

EDELWEISS @ TAUP2017

EDELWEISS-LT: Heat-only background

- Standard signals on both NTDs but none on any electrodes
- Many studied hypotheses, none conclusive so far
 - Noise, cryogenics, stress from detector suspension or from glueing, natural radioactivity...
- New detector configurations being tested to study these hypotheses
 - Deported NTD glued on separate sapphire wafer
 - Photolithographed high-impedance NbSi TES sensitive to athermal phonons
- Dominant at low energy, but sufficiently reproducible for analysis of present 100V data & for EDELWEISS-LT: operation of 4x870g at 100V for 150 days in current LSM backgrounds

Ionization improvements

- Cold front-end: replace JFET @100K with HEMT (High Electron Mobility Transistor) @4K
- Can be operated at 4K: shorter cabling -> reduced capacitance -> better signal/noise
- Successful HEMT amplifier with sub-100 eV resolution operated on a CDMS-II detector [A. Phipps et al., arXiv:1611.09712]
- EDELWEISS electrode design with lower capacitance: $2 \rightarrow 4$ mm spacing already achieved. Goal: reach 50 eV_{ee}.

2 mm spacing \rightarrow 4 mm spacing

EDELWEISS-DMB8:

Operation of a 200 kg array @8V (with nuclear recoil discrimination) in the improved background environment of SuperCDMS @ SNOLAB

Probing the region of the coherent scattering of ⁸B solar v's with resolution and discrimination

Ionization improvements: EDELWEISS-DMB8

Coherent nuclear scattering from solar ⁸B neutrinos mimic a ~6 GeV WIMP with $\sigma \sim 4.4 \times 10^{-45}$ cm²

Probe with discrimination and resolution (~10%) a bkg that will soon become relevant for WIMP searches near 6 GeV/c².

EDELWEISS-DMB8:

Operation of a 200 kg array @8V (with nuclear recoil discrimination) in the improved background environment of SuperCDMS @ SNOLAB

Probing the region of the coherent scattering of 8B solar v's with resolution and discrimination

Conclusions

EDELWEISS-III

- Robust design, good reproducibility of performances
- Detailed description of backgrounds

[arXiv:1706.01070] [JINST 11 (2016) P10008]

[AstroPart. 91 (2017) 51]

- Improved ionization resolution & thresholds lead to x40 improvement of WIMP sensitivity at ~5-10 GeV wrt EDELWEISS-II.
 [JCAP05 (2016) 019] [EPJC 76 (2016) 5481
- Prospects in the GeV-WIMP range: EDELWEISS-LT [arXiv:1707.04308]
 - Improve thresholds x10 using boost from 8 to 100V (achieved)
 - 10⁻⁴¹ cm² achievable at LSM with 4 detectors with present levels of backgrounds
- Prospects for WIMPs in the ⁸B region: EDELWEISS-DMB8
 - 50 eV ionization resolution to obtain pure nuclear recoil sample + 10% resolution on recoil energy: clear spectral identification of ⁸B v [arXiv:1707.04309]
 - Use HEMT preamplifier + reduce electrode capacitance (reduction by a factor of 2 of number of electrodes achieved)
 - ~200 kg FIDs at SNOLAB to complement nicely the SuperCDMS-SNOLAB reach

EDELWEISS collaboration

July 24th, 2017