Modulations in Spectra of Galactic Gamma-ray sources as a result of photon-ALPs mixing.

Jhilik Majumdar¹, Francesca Calore², Dieter Horns¹

27.07.17

¹ Institute for Experimental Physics, University of Hamburg.

² Laboratoire d'Annecy-le-Vieux de Physique Théorique, CNRS

Introduction

CP violation in QCD: Axion intoduced

Most general gauge invariant Lagrangian of QCD:

$$L = -\frac{1}{4}G_{\mu\nu}^{a}G^{a,\mu\nu} + \overline{q}(i\gamma_{\mu}D^{\mu} - M_{q}) - \frac{\alpha_{s}}{8\pi}\theta G_{\mu\nu}^{a}\tilde{G}^{a,\mu\nu}$$
 (1)

Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto E^a.B^a$ violates CP.

Clear indication from : electric dipole moment of neutron $(d_n \sim 6 \times 10^{-17} \theta ecm)$.

Experimental value \Rightarrow $\mid \theta \mid < 10^{-9}$

Solve to CP problem: Pseudo-scalar particle Axion comes.

Figure 1: Y. Semertzidis et. al.2015.

ALPs have the property:

Oscillate into photons or vice-versa in the presence of magnetic field.

Current Axion limits:

Figure 2: Parameter space for axions and axion-like particles [M. Meyer et al. 2016].

Spectral distortion due to Photon-ALPs mixing:

The probability of the conversion in a distance of 0 to d is :

$$P_{\gamma \to a} = \frac{g_{\alpha\gamma}^2}{8} \left(\left| \int_0^d dz' \, e^{2\pi i z' / l_0} B_X(x, y, z') \right|^2 + \left| \int_0^d dz' \, e^{2\pi i z' / l_0} B_Y(x, y, z') \right|^2 \right) \quad : g_{\alpha\gamma} B d \ll 1$$
 (2)

where, $B_t = \sqrt{B_x^2 + B_y^2}$ and $I_0 = 4\pi E/m_a^2$. [Mirizzi et al. 2007] $g_{\alpha\gamma}$:a coupling constant of dimension $(energy)^{-1}$

Observations:

Detecting gamma rays with Fermi LAT

- Gamma ray space telescope.
- Field of view : 20% of sky at a time.
- Effective area: $1m^2$.
- Energy range from about 100
 MeV to more than 500 GeV.
- Orbital period: 1.6 hours.
- Point spread function: 0.8° at 1 GeV.

Figure 3: Fermi Large Area Telescope[Image Credit: NASA/Fermi LAT Collaboration]

Source selection:

Source selection criterion:

- Bright Galactic sources.
- Sources that are crossing the spiral arms along the line of sight.

Pulsar list:

- 1. J2021+3651
- 2. J1420-6048
- 3. J2240+5831
- 4. J1648-4611
- 5. J1718-3825
- 6. J1702-4182

Figure 4: Source positions in the plane of Galactic magnetic field(Jansson & Farrar model; Jansson et al. 2012).

Data Analysis:

Fermi-LAT data analysis:

- 8 years of Fermi LAT data Pass 8 data [Ackermann et al. 2014].
- ENRICO binned likelihood(i.e. Fermi gtlike) optimization(Sanchez & Deil, 2013) technique has been performed.
- Energy region: 100 MeV to 300 GeV.
- Energy bins: 25.
- Pulsar spectrum is modelled by a power law with exponential cutoff:

$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-1} \exp\left(-\frac{E}{E_{cut}}\right) \tag{3}$$

Fermi-LAT data analysis:

Figure 5: The conversion probability of the photon to axion as a function of energy.

$$\left(\frac{dN}{dE}\right)_{bin} = \left(1 - P_{\gamma \to a}\left(E, g_{a\gamma}, m_a\right)\right) \cdot \left(\frac{dN}{dE}\right)_{model,bin} \tag{4}$$

Figure 6: Energy dispersion matrix.

- We perform a fit to the data, minimising the χ^2 function.
- Log(likelihood) has a parabolic pattern.
- Energy dispersion matrix derived for all the EDISP event types together.

Fermi-LAT data analysis:

• For P8R2 SOURCE V6 event class, systematic uncertainties in effective area are derived to be about 2.4 %.

Figure 7: Systematic uncertainties of Vela Pulsar for EDISP1, EDISP2, EDISP3 event types.

 Signature of photon-ALPs oscillations, including the effect of oscillations in the predicted spectra:

$$\left(\frac{dN}{dE}\right)_{fit} = D_{kk_p} \cdot \left(1 - P_{\gamma \to a}\left(E, g_{a\gamma}, m_a\right)\right) \cdot \left(\frac{dN}{dE}\right)_{model} \tag{5}$$

Results:

Pulsar spectrum:

Figure 8: Best-fit model of the spectrum of Pulsar candidates. Right panel: The χ^2 scan as function of photon-ALPs coupling and ALPs mass.

Pulsar spectrum:

Figure 9: Best-fit model of the spectrum of Pulsar candidates. Right panel: The χ^2 scan as function of photon-ALPs coupling and ALPs mass.

Combined Photon-ALPs coupling and ALPs mass sensitivity:

Figure 10: combined χ^2 scan as function of photon-ALPs coupling and ALPs mass.

Significance level estimated by F-test: 7.5σ .

Conclusion:

Summary:

- Indications for ALPs in case of Fermi LAT data of galactic pulsar candidate.
- Photon-ALPs mixing is non-linear in the spiral arms and in the large scale field of the inner Galaxy.
- ALPs mass bounds: $5 \text{ neV} \le m_a \le 8 \text{ neV}$
- Photon-ALPs coupling bound: 20 80 ×10⁻¹¹ GeV⁻¹
- Significance level : 7.5σ .
- The main challenge of this work is to choose the magnetic field model as the resulting mixing parameters are quite model dependent.

Thank you!

Backup slides

Figure 11: Best-fit model of the spectrum of Pulsar candidates. Right panel: The χ^2 scan as function of photon-ALPs coupling and ALPs mass.

back up slides

Figure 12: Bfield model: Pshirkov ASS model

Figure 13: Bfield model: Pshirkov BSS model

Figure 14: Bfield model:Magnetic field along the line of sight of the pulsar J2021 +3651.Top panel for the model of Jansson-Farrar, middle panel for the model of Pshirkov in BSS, bottom in ASS mode.

Figure 15: Log-likelihood as a function of flux for first energy bin of PSR J2021+3651.

Figure 16: Log-likelihood as a function of flux for 10th energy bin of PSR J2021+3651.

Figure 17: Conversion probability of photon to axion in allsky map.