

Latest results from NEMO-3 and commissionning status of the SuperNEMO demonstrator

Thibaud Le Noblet - LAPP On behalf of the NEMO collaboration

Neutrinoless double beta decay

- Process forbidden in the Standard Model
- Test Dirac/Majorana nature of neutrinos
- Half-life strongly suppressed

Take into account the mechanism underlying the 0vββ process

- Few different mechanisms may induce $0\nu\beta\beta$:
 - Light Majorana neutrino exchange
 - Right-handed current (V+A), Majoron, SUSY etc.
- Different topology in the final state

The tracker-calorimeter technique

- Source separated from detector :
 many ββ isotopes can be investigated
- Reconstruction of the final state topology and particle identification:
 - Precise background identification and measurement
 - Possible discrimination of mechanism behind 0vββ process

 Generally lower energy resolution and detection efficiency than homogeneous detector (HPGe and bolometers)

The NEMO-3 detector

- ββ decay experiment which combines both tracker and calorimetric measurements
- Took data from February 2003 to January 2011
- Located in the Modane underground laboratory (LSM) at ~4800 m.w.e
- Investigated 7 different ββ isotopes
- Divided into 20 identical sectors

The NEMO-3 detector – a sector

Central $\beta\beta$ source plane made of 7 different isotopes : ^{100}Mo (7 kg), ^{82}Se (1 kg), ^{130}Te , ^{116}Cd , ^{150}Nd , ^{96}Zr , ^{48}Ca

Latest results presented in this talk

+ Ultra-pure Cu and very pure natTe blank foils to cross check background measurements

Wire drift chamber made of 6180 Geiger cells, $\sigma_{\text{vertex}} = 3 \text{ mm (XY)}$, 10 mm (Z)

- Calorimeter made of 1940 polystyrene scintillators coupled with low radioactivity PMTs, FWHM ~15 % at 1 MeV
- 25 Gauss magnetic field for the charge identification
- Gamma and neutron shields, anti-radon tent

Backgrounds

Internal backgrounds
 2νββ tail and radio-impurities inside the source foil
 208Tl (from ²³²Th), ²¹⁴Bi (from ²³⁸U)

External backgrounds
 Radio-impurities of the detector

Radon inside the tracking detector

Deposits on the wire near the $\beta\beta$ foil Deposits on the surface of the $\beta\beta$ foil

Backgrounds are measured through different background channels using event topologies

- 36.6 g contained in a strip
- 150 Nd : $Q_{\beta\beta} = 3.4$ MeV and the largest phase space of any isotope
- Most precise measurement of the $2\nu\beta\beta$ decay rate to date :

$$T_{1/2}^{2\nu} = [9.34 \pm 0.22 \,(\text{stat.})\,_{-0.60}^{+0.62} (\text{syst.})] \times 10^{18} \,\text{yr}$$

- First use of BDT to increase sensitivity by 10 %
- Limits set for different mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{22} \,\text{yr} \,(90\% \,\text{C.L.})$$

 $\langle m_{\nu} \rangle < 1.6 - 5.3 \,\text{eV}$

- 410 g distributed in 5 strips
- $^{116}\text{Cd}: Q_{\beta\beta} = 2.8 \text{ MeV}$ and is a candidate isotope for future $0\nu\beta\beta$ experiments (CdZnTe pixels)
- High precision measurement of the $2\nu\beta\beta$ decay rate :

$$T_{1/2}^{2\nu} = [2.74 \pm 0.04 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})] \times 10^{19} \, \mathrm{yr}$$

- $0\nu\beta\beta$:
 - Use of a multivariate analysis
 - Limits set for different mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 1.0 \times 10^{23} \text{ yr (90\% C.L.)}$$

$$\langle m_{\nu} \rangle < 1.4 - 2.5 \text{eV}$$

- Neutrinoless quadruple beta decay
 - Proposed by Heeck and Rodejohann Europhys. Lett. 103, 32001 (2013)
 - Lepton number violating process
 - Neutrinos are Dirac particles and 0νββ is forbidden in this model
 - The best candidate is $^{150}Nd \rightarrow ^{150}Gd + 4e$ ($Q_{48} = 2.079 \text{ MeV}$)
- Exploit the unique ability of NEMO-3 to reconstruct the kinematics of each e-
- No evidence of this decay

$$T_{1/2}^{0\nu4\beta} > (1.1 - 3.2) \times 10^{21} \text{ y}$$

Depending on the model

• World's first limit on this process

Installation and Commissionning status of the SuperNEMO demonstrator

SuperNEMO demonstrator module

	NEMO-3	SuperNEMO demonstrator
Mass [kg] (main isotopes)	7 (¹⁰⁰ Mo)	7 (⁸² Se)
$T_{1/2}^{2 u}\ [y]$	7.2×10^{18}	9.9×10^{19}
Energy resolution		
FWHM at 1 MeV	15 %	8 %
FWHM at 3 MeV	8 %	4 %
Source radiopurity		
A(²⁰⁸ TI)	$\sim 100~\mu$ Bq/kg	$<$ 2 μ Bq/kg
A(²¹⁴ Bi)	$<$ 300 μ Bq/kg	$<$ 10 μ Bq/kg
Level of radon A(²²² Rn)	$\sim 5.0~\text{mBq/m}^3$	$< 0.15~\mathrm{mBq/m^3}$
Sensitivity after 5 y of data taking	$T_{1/2}^{0 u} > 10^{24} \; y$	$T_{1/2}^{0 u} > 6 \times 10^{24} \text{ y}$

• Goal of the demonstrator

- Run for 2.5 y with 7 kg of 82 Se → $T_{1/2}$ > 6 x 10^{24} y $m_{\beta\beta}$ < 0.2 - 0.55 eV
- Prove SuperNEMO module can be a background free experiment in the region of interest

SuperNEMO source foils

- 7 kg of 82 Se ($Q_{\beta\beta} = 2.998 \text{ MeV}$) distributed in 36 foils
- Made of 82Se + PVA glue + mylar (mechanical support)
- Different purification methods tested : distillation, chromatography, chemical precipitation
- Very challenging requirements on foil contamination:
 - $A(^{208}Tl) < 2uBq/kg \text{ and } A(^{214}Bi) < 10uBq/kg$
- Radiopurity measured in a dedicated detector BiPo

JINST 12 (2017), P06002

SuperNEMO tracker

- 2034 drift cells working in Geiger mode
- Ultrapure materials : copper, steel, duracon. HPGe and radon tested.
- Robotic construction
- Radiopure gas flow, anti-radon sealing
- < 1 % of dead channels</p>

13

SuperNEMO calorimeter

- 440 x 8" PMT + 272 x 5" directly coupled to polystyrene scintillators
- Energy resolution : 4 % FWHM at 3 MeV (82 Se $Q_{\beta\beta}$)
- Coincidence time resolution : 400 ps at 1 MeV
- Calibration system maintain stability better than < 1 %

Status of the installation and commissionning

- The 2 calorimeter frames have been assembled and populated with the calorimeter blocks
- The tracker has been installed
- Installation of the source foil during fall 2017
- Demonstrator module starts data taking at end of 2017

 Commissionning of one half of the demonstrator is underway

> First event display showing the tracker and the calorimeter working together

Conclusion

• NEMO 3 :

- Final searches for 0νββ have been published: 100Mo, 116Cd, 150Nd, 48Ca
- Most competitive $0\nu\beta\beta$ limit obtained with 100 Mo, close to the best limits from other experiments, with only 7kg of isotopes $\langle m_{\nu} \rangle < 0.3 0.6 \text{ eV}$
- Final search for 82 Se, publication is coming up $(2\nu\beta\beta)$ and $(2\nu\beta\beta)$
- Many world leading $2\nu\beta\beta$ measurements
- Unique new physics can be performed (e.g. $0\nu4\beta$)

• SuperNEMO :

- The SuperNEMO demonstrator module is almost completed :
 - The calorimeter and tracker have been installed
 - Installation of the source foil this fall
- Demonstrator data taking expected to start at the end of this year

Thank you!

Back -up slides

Internal Backgrounds

Regroups the backgrounds coming from the source foil, mainly come from:

- Radio-impurities inside the source foil
 - 208Tl (from 232Th), 214Bi (from 238U)
 - Single beta emitter (40K, 234mPa, 210Bi)
- ²¹⁴Bi from radon decay in tracker volume

Backgrounds are measured through different background channels using event topologies

- 208 Tl in $1e1\gamma$, $1e2\gamma$ and $1e3\gamma$
- ⁴⁰K, ^{234m}Pa, ²¹⁰Bi in 1e channel
- $^{214}\mathrm{Bi}$ $^{222}\mathrm{Rn}$ in $1\mathrm{e}1\alpha$ and $1\mathrm{e}1\gamma$ channel

External Backgrounds

Regroups the backgrounds not coming from the source foil, come from:

- Radio-impurities in detector material (208Tl, 214Bi)
- γ from (n,γ) reactions
- μ Bremsstrahlung

Are measured in 2 main channels, requiring the timing informations:

- external crossing electron
- external $\gamma \rightarrow e$

²¹⁴Bi and Radon

- $^{214}{
 m Bi}$ is a dangerous background with ${
 m Q}_{
 m eta}=3.3~{
 m MeV}$
- Arise from ²³⁸U-chain or ²²²Rn emanation
- Measured in 1e1α channel

- Background free measurement
- Alpha track length sensitive to different contamination origin

Calibration systems

• A two part system has been developed to calibrate the detector

1) Source Deployment system:

• Introduction of ²¹⁰Bi sources into the detector via a system of weights and stepper motors to calibrate the energy scale (~ monthly)

2) Light Injection system:

- Guarantee the stability of the calorimetric response to 1 %.
- Injection of LED light into each scintillator block via optical fibers (~ daily)

Radon

- 1. Purge for several $T_{1/2}$
- 2. Flow through cooled carbon trap
- 3. Release into electrostatic detector

For reasonable gas flow rates :

$$A (222Rn) = 150uBq/m^3$$

70 atoms per m³ (30 times better than NEMO-3)

Sensitivity vs Exposure

BiPo-3 detector

- HPGe detectors are not sensitive enough to reach few uBq/kg.
- BiPo is a dedicated detector running at Canfran Underground Laboratory to measured very low contaminations.
- ²¹⁴Bi and ²⁰⁸Tl measured through process from natural radioactivity chain
- Thin radiopure plastic scintillators coupled to light guides and low radioactivity PMTs

- 7 g distributed in 9 CaF2 disks
- 48 Ca: highest $Q_{\beta\beta} = 4.3$ MeV above almost all backgrounds
- Most precise measurement of the 2νββ decay rate to date :

$$T_{1/2}^{2\nu\beta\beta} = 6.4_{-0.6}^{+0.7}(\text{stat.})_{-0.9}^{+1.2}(\text{syst.}) \times 10^{19} \text{ yr}$$

Limits set for different 0νββ mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{22} \text{ yr (90\% C.L.)}$$

$$\langle m_{\nu} \rangle < 6.0 - 26 eV$$

No events observed for E > 3.4 MeV, promising for background free searches with SuperNEMO

Other physics 1 (example)

• Many models might mediate neutrinoless double beta decay

Other physics 2 (example)

Many models might mediate neutrinoless double beta decay

Quadruple beta decay 1

Only 3 candidates

	$Q_{0\nu4\beta}$	Other decays	NA
$^{96}_{40}\mathrm{Zr} ightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$ au_{1/2}^{2\nu2\beta} \simeq 2 \times 10^{19}$	2.8
$^{136}_{54}{ m Xe} ightarrow ^{136}_{58}{ m Ce}$	0.044	$ ag{7}{\tau_{1/2}^{2\nu2\beta}} \simeq 2 \times 10^{21}$	8.9
$^{150}_{60}{ m Nd} ightarrow ^{150}_{64}{ m Gd}$	2.079	$ au_{1/2}^{2\nu2\beta} \simeq 7 \times 10^{18}$	5.6

Estimated life-time:

$$\frac{\tau_{0\nu4\beta}}{\tau_{2\nu2\beta}} \simeq 10^{46} \left(\frac{\Lambda}{\text{TeV}}\right)^4$$

4n4b is killed by the Q-dependance of the eight-particle phase space \sim Q²³ (compared to Q¹¹ for 0n4b)

Quadruple beta decay 2

Very uncertain and little phenemenoly in the literature

Due to the absence of a complete theoretical treatment of the kinematics of 0n4b decays, 4 models of the electron energy distribution have been tested

• Uniform $Q_{0n4b} = E_1 + E_2 + E_3 + E_4$ (distributed uniformly)

- Symmetric $A_m = \mathcal{S}\{1 \times 1\}$
- Semi-symmetric $A_m = \mathcal{S}\{1 \times (T_k T_l)^2\}$
- Anti-symmetric $A_m = \mathcal{S}\{(T_i T_j)^2 \times (T_k T_l)^2\}$

$$\frac{\mathrm{d}^4 N}{\prod_{i=1}^4 \mathrm{d} T_i} \propto A_m \delta \left(Q_{4\beta} - \sum_{i=1}^4 T_i \right) \cdot \prod_{i=1}^4 (T_i + m_e) p_i F(T_i, Z),$$

S{...} is a sum over the symmetric interchange of label i,j,k,l of the four electrons

Decay via the excited states 1

- The double beta decay can also occurs via the excited state of the daughter nucleus
- Provide additional handle for NME calculations
- Alternative channel to study an hypothetical 0vββ signal
- Might help to distinguish alternative $0\nu\beta\beta$ decay mechanisms

- Signature : 2e + one or more monoenertic γ in coincidence
- Background is highly suppressed

Decay via the excited states 2

Decay via the excited states 3

• Several isotopes have already been investigated

Decays	$T_{1/2}$ [y] at 90 % C.L.			
	82Se B. Soulé Ph.D. thesis 2015	$^{96}\mathrm{Zr}$ G. Eurin Ph.D. thesis 2015	$^{150}\mathrm{Nd}$ S. Blondel Ph.D. thesis 2013	
$(g.s \rightarrow 0^+) \\ 2\nu\beta\beta$	$> 1.29 \times 10^{21}$	$> 5.85 \times 10^{19}$	$(7.12 \pm 1.28 \pm 0.91) \times 10^{19}$	
$(g.s \rightarrow 0^{+}) \\ 0\nu\beta\beta$	$> 2.31 \times 10^{22}$	-	$> 1.6 \times 10^{21}$	
$(g.s \rightarrow 2^+) \\ 2\nu\beta\beta$	_	-	$> 2.4 \times 10^{20}$	
$(g.s \rightarrow 2^+) \\ 0\nu\beta\beta$	_	-	-	

Searches for periodic modulation in decay rate

- In their Radiations from Radioactive Substances, E. Rutherford, J. Chadwick and Charles Ellis concluded:
 - « the rate of transformation [...] is a constant under all conditions »
- Is the decay « constants » are influenced by the Sun? By which phenomena? Influence of solar neutrino? arXiv:0808.3283
- An experiment performed at Brookhaven National Laboratory (BNL), between 1982 and 1986, by studying silicon-32, found that its half-life modulated around its usual value (172 y) by the order of 0.1 %.
- The modulation appeared to be almost in phase with the varying distance of the Earth to the Sun: in January, when the Earth is closest, the decay rate was faster; in July, when the Earth is farthest, it was slower.
- The variation of the decay rate have also been claimed for Manganese-54 arXiv:0808.3156
- The results are controversial, and the physics community is skeptical. Very small deviation and what about the stability of the detectors?

Searches for periodic modulation in decay rate

- Nuclear decays are governed by various fundamental forces and are considered unaffected by the external temporal or environmental effects.
- Modulations in nuclear decay rate may point toward physics beyond standard model.
- Some experiments claim the observation of modulation of decay rate (BNL: 32Si)

BNL experiment Astropart. Phys. 32 (2009) 42-46

- NEMO-3 ran during over 7 years.
- Use the ¹⁰⁰Mo sample (largest and cleanest ββ sample in NEMO-3)
- First search for periodic variation in the $2\nu\beta\beta$ decay rate
- No evidence of periodic modulations has been found (publication soon)

Choice of the isotopes

- Only 35 nuclei can decay by 0νββ

	Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]	G _{0v} [10 ⁻¹⁴ y ⁻¹] ^(*)	T ^{2v} _{1/2} [10 ¹⁹ y]	Experiment
sotopes enrichment and $T^{2^{N}}$ $_{1/2}$ from respective experiment	⁴⁸ Ca	4270	0.187 (73)	6	4.2+2.1-1.0	NEMO3
	⁷⁶ Ge	2039	7.8 (86)	1	150±10	GERDA
	⁸² Se	2995	8.7 (97)	3	9.0±0.7	NEMO3
	⁹⁶ Zr	3350	2.8 (57)	6	2.0±0.3	NEMO3
	¹⁰⁰ Mo	3034	9.6 (99)	4	0.71±0.04	NEMO3
	¹¹⁶ Cd	2802	7.5 (93)	5	3.0±0.2	NEMO3
	¹³⁰ Te	2527	34.5 (90)	4	70±10	NEMO3
	¹³⁶ Xe	2480	8.9 (80)	4	238±14	KamlandZEN
Isotop	¹⁵⁰ Nd	3367	5.6 (91)	19	0.78±0.7	NEMO3

NEMO-3 : Physics Highlights (2νββ)

Isotope	Mass [g]	\mathbf{Q}_{etaeta} [keV]	$oxed{\mathbf{T}_{1/2} \ [10^{19}] \ \mathrm{yrs}}$	Comments	
$100 { m Mo}$	6914	3034	0.71 ± 0.05	World's Best	
$^{82}{ m Se}$	932	2996	10.07 ± 0.56	World's Best	
$^{130}{ m Te}$	454	2528	70 ± 14	World's Best & First (Direct)	
$^{116}\mathbf{Cd}$	410	2814	2.74 ± 0.18	World's Best	
$^{150}\mathbf{Nd}$	37	3371	0.934 ± 0.066 World's Best		
$^{96}{ m Zr}$	9.4	3350	2.35 ± 0.21 World's First & B		
⁴⁸ Ca	7	4272	6.4 ± 1.4	World's Best	