Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

James Diacoumis, University of New South Wales

TAUP 2017, Sudbury, 24-28th - July

Based on work done in collaboration with Yvonne Wong

Goals

- To give an introduction to CMB Spectral Distortions
- To discuss 2 Dark Matter scenarios
- Late Kinetic Decoupling from photons $(LKD\gamma)$ Late Kinetic Decoupling from neutrinos $(LKD\nu)$
- To point out interesting physical effects occurring in these models
- To show that spectral distortions can be used to these models and distinguish them from other solutions to the small-scale structure problems.

Motivation

What is a Spectral Distortion?

J. Chluba, J. Hamann and S. Patil (2015).

How do Spectral Distortions occur?

Distance

R. Khatri, R. Sunyaev and J. Chluba (2012) 1205.2871

Detection of Spectral Distortions

COBE/FIRAS Collaboration (1994) Astrophys. J.

Heating Rate

• The heating rate of CMB photons due to dissipation of small-scale acoustic modes is:

$$\frac{\mathrm{d}\left(Q/\rho_{\gamma}\right)}{\mathrm{d}z} \approx \frac{64c^{2}}{15\mathcal{H}\dot{\kappa}} \int \frac{\mathrm{d}k}{2\pi^{2}} k^{4} P_{\mathcal{R}}(k) \left(\Theta_{1}^{2}+\ldots\right).$$
Heating Rate $\approx \frac{\mathrm{Const}}{\mathrm{factors}} \int \frac{\mathrm{Primordial} \,\mathrm{Power}}{\mathrm{Spectrum}} \left(\frac{\mathrm{Photon} \,\mathrm{Temp}}{\mathrm{Transfer} \,\mathrm{Functions}}\right).$

• The photon temperature transfer function has the form:

$$\Theta_1 \approx A\left(\frac{c_s}{c}\right) \sin(kr_s) \exp\left(-\frac{k^2}{k_D^2}\right).$$

Photon Temp Transfer Function

Const factors Acoustic oscillations

Diffusion damping

Late Kinetic Decoupling from Neutrinos (LKD ν)

• Equations of motion for a coupled neutrino-DM fluid.

 Interaction rate for neutrino-DM scattering scattering

$$\dot{\mu} = a\sigma_{\rm DM-\nu}cn_{\rm DM}$$

 $\dot{\kappa}/\dot{\mu}$ is proportional to

$$u_{\nu} \equiv \frac{\sigma_{\rm DM-\nu}}{\sigma_{\rm Th}} \frac{100 {\rm GeV}}{m_{\rm DM}}$$

Interaction rate for photon-baryon scattering

$$\dot{\kappa} = a\sigma_{\rm Th}cn_e$$

R. Wilkinson, J. Lesgourgues and C. Boehm (2014) 1401.7597

Transfer Functions $(LKD\nu)$ $k = 100 Mpc^{-1}$

How can we understand the physics?

• The photon temperature transfer function has the form:

$$\Theta_1 \approx A\left(\frac{c_s}{c}\right) \sin(kr_s) \exp\left(-\frac{k^2}{k_D^2}\right).$$

Where $A = \frac{1}{1 + \frac{4}{15}f_{\nu}}$ and $f_{\nu} = \frac{\rho_{\nu}}{\rho_{\gamma} + \rho_{\nu}} \simeq 0.41$

- Neutrinos normally don't participate in acoustic oscillations as they stream freely.
- When coupled to DM they 'cluster' more efficiently and participate in acoustic oscillations as photons.
- \Rightarrow Overall increase in oscillation amplitude.

Heating Rate $(LKD\nu)$

 $\mathcal{A}_i = 1$

Expected μ – distortion (LKD ν)

Late Kinetic Decoupling from Photons (LKD γ)

• Equations of motion for a coupled photon-baryon and photon-DM fluid.

Velocity
Divergence Gravitational Expansion Density

$$\dot{\theta}_b = k^2 \psi - \mathcal{H} \theta_b + c_s^2 k^2 \delta_b - R^{-1} \dot{\kappa} (\theta_b - \theta_\gamma),$$

 $\dot{\theta}_{\gamma} = k^2 \psi + k^2 \left(\frac{1}{4}\delta_{\gamma} - \sigma_{\gamma}\right) - \dot{\kappa} (\theta_{\gamma} - \theta_b)$

 $- \dot{\mu} (\theta_{\gamma} - \theta_{\rm DM}),$

 $\dot{\theta}_{\rm DM} = k^2 \psi - \mathcal{H} \theta_{\rm DM} - S^{-1} \dot{\mu} (\theta_{\rm DM} - \theta_{\gamma}).$

Baryon-photon coupling

Baryon-photon coupling

Photon-DM

coupling

- Interaction rate for photon-DM scattering $\dot{\mu} = a \sigma_{{
 m DM}-\gamma} c n_{{
 m DM}}$
- $\dot{\kappa}/\dot{\mu}$ is proportional to $u_{\gamma} \equiv \frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}} \frac{100 {\rm GeV}}{m_{\rm DM}}$

Interaction rate for photon-baryon scattering

$$\dot{\kappa} = a\sigma_{\mathrm{Th}}cn_{e}$$

R. Wilkinson, J. Lesgourgues and C. Boehm (2013) 1309.7588

Heating Rate needs to be modified

$$\begin{aligned} \frac{\mathrm{d}\left(Q/\rho_{\gamma}\right)}{\mathrm{d}z} &= \frac{4a\dot{\kappa}}{\mathcal{H}} \int \frac{k^{2}\mathrm{d}k}{2\pi^{2}} P_{\mathcal{R}}(k) \left[\frac{\left(3\Theta_{1}-v_{b}\right)^{2}}{3} + \frac{9}{2}\Theta_{2}^{2} - \frac{1}{2}\Theta_{2}\left(\Theta_{0}^{\mathrm{P}}+\Theta_{2}^{\mathrm{P}}\right) + \sum_{\ell\geq3}(2\ell+1)\Theta_{\ell}^{2} \right] \\ &+ \frac{4a\dot{\mu}_{\gamma}}{\mathcal{H}} \int \frac{k^{2}\mathrm{d}k}{2\pi^{2}} P_{\mathcal{R}}(k) \left[\frac{\left(3\Theta_{1}-v_{\mathrm{DM}}\right)^{2}}{3} + \frac{9}{2}\Theta_{2}^{2} - \frac{1}{2}\Theta_{2}\left(\Theta_{0}^{\mathrm{P}}+\Theta_{2}^{\mathrm{P}}\right) + \sum_{\ell\geq3}(2\ell+1)\Theta_{\ell}^{2} \right], \end{aligned}$$

- DM-photon scattering provides a new channel through which small-scale perturbations can be dissipated directly.
- Can be written explicitly in terms of the transfer functions as before

$$\frac{\mathrm{d}\left(Q/\rho_{\gamma}\right)}{\mathrm{d}z} \simeq \frac{4a}{\mathcal{H}} \int \frac{k^2 \mathrm{d}k}{2\pi^2} P_{\mathcal{R}}(k) \, k^2 \, \Theta_1^2 \left[\frac{1}{\dot{\kappa} + \dot{\mu}_{\gamma}} \frac{16}{15} + \frac{3\dot{\mu}_{\gamma}}{k^2} \left(\frac{k^2}{k^2 + 3S_{\gamma}^{-2}\dot{\mu}_{\gamma}^2}\right)\right]$$

Transfer Functions $(LKD\gamma)$ $k = 100 Mpc^{-1}$

Heating Rate
$$(LKD\gamma)$$
 $A_i = 1$

How can we understand the physics?

• The photon temperature transfer function has the form:

$$\begin{split} \Theta_1 &\approx A\left(\frac{c_s}{c}\right) \sin\left(kr_s\right) \exp\left(-\frac{k^2}{k_D^2}\right).\\ \text{Where}\\ \partial_z k_D^{-2} &\simeq -\frac{a}{6\mathcal{H}} \left(\frac{1}{\dot{\kappa} + \dot{\mu}} \frac{16}{15} + \frac{3\dot{\mu}}{k^2} \left(\frac{k^2}{k^2 + 3\left(S^{-1}\dot{\mu}\right)^2}\right)\right)\\ \text{Diffusion Damping} &\simeq \qquad \text{Viscosity} \qquad + \qquad \text{Heat Conduction} \end{split}$$

- The extra term due to heat conduction is also present for a photon-baryon fluid but suppressed during tight-coupling.
- Heating Rate is damped due to additional viscosity of the fluid and enhanced due to additional heat conduction.

 \Rightarrow Competing effects dominate at different times

Projected Constraints (PRISM)

Projected Constraints (PRISM)

Conclusions

- Spectral Distortions offer a unique probe of physics on extremely small-length scales in the early universe.
- They can be used to probe models of late kinetic decoupling and distinguish them from other solutions to the small-scale structure problems.
- Future Experiments such as PRISM can set competitive bounds on the elastic scattering cross sections between DM and SM particles.
- New physics effects such as the change of the diffusion damping scale in the presence of a weakly coupled DM-photon system warrant further study.