Atmospheric Neutrino and Proton Decay Results in Super-Kamiokande #### **Atmospheric Neutrinos** - Decay products of secondaries by cosmic ray interactions with atmosphere. (v_{μ} : $v_{e} \sim 2:1$ at GeV energy) - Power-law like energy spectrum. Affected by cutoff due to geomagnetic field below several GeV. - Path length: distributed in O(10)km ~ 13,000km depending on zenith angle direction - Neutrino oscillation driven by Δm^2_{32} below O(10) GeV ## **Super-Kamiokande Detector** - Water Cherenkov imaging detector - 1000 m underground in Kamioka mine - 50 kton volume (fiducial 22.5 kton) - 11129 20" PMTs in inner detector (ID) for Cherenkov ring imaging - 1885 8" PMTs for outer detector (OD) | Phase | Period | # of PMTs | |--------|-------------------|-------------| | SK-I | 1996.4 ~ 2001.7 | 11146 (40%) | | SK-II | 2002.10 ~ 2005.10 | 5182 (20%) | | SK-III | 2006.7 ~ 2008.8 | 11129 (40%) | | SK-IV | 2008.9 ~ | 11129 (40%) | ## Super-K Atmospheric Event Sample - Cover wide energy range from 100 MeV up to 10 TeV with three different event topologies - High purity of v_{μ} and v_{e} CC sample with excellent particle ID performance ## **Atmospheric Oscillation Physics** ve flux change due to sub-dominant oscillation: • - Many opportunities to test three flavor mixing: - v_{μ} disappearance by v_{μ} -> v_{τ} (Δm^2_{32} , θ_{23}) - Sub-dominant oscillation in v_e sample: mass hierarchy (sign of Δm^2_{32}), δ_{CP} , θ_{23} octant - v_{τ} appearance - Exotic mode (sterile, NSI, ..) ### **Matter Effect and Mass Hierarchy** #### Normal hierarchy ($\Delta m^2_{32} > 0$) Neutrino is affected by additional potential due to forward scattering with electrons (matter effect) $$i rac{d u(t)}{dt} = H_0 u(t) \qquad H_0 ightarrow H_0 + rac{1}{2E} \left(egin{array}{cc} A & 0 \ 0 & 0 \end{array} ight) \ A = \pm 2\sqrt{2}G_FE_ u n_e$$ Effective mixing angle in matter: $$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$ At resonance region in multi-GeV: $$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$ #### **Matter Effect and Mass Hierarchy** Neutrino is affected by additional potential due to forward scattering with electrons (matter effect) $$i rac{d u(t)}{dt}=H_0 u(t) \qquad H_0 o H_0+ rac{1}{2E}\left(egin{array}{cc} A & 0 \ 0 & 0 \end{array} ight) \ A=\pm2\sqrt{2}G_EE_ un_e$$ Effective mixing angle in matter: $$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$ At resonance region in multi-GeV: $$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$ Presence of resonance depends: $$- v / \overline{V} (A \rightarrow -A)$$ ### **Matter Effect and Mass Hierarchy** Neutrino is affected by additional potential due to forward scattering with electrons (matter effect) $$i rac{d u(t)}{dt}=H_0 u(t) \qquad H_0 o H_0+ rac{1}{2E}\left(egin{array}{cc} A & 0 \ 0 & 0 \end{array} ight) \ A=\pm2\sqrt{2}G_EE_ un_e$$ Effective mixing angle in matter: $$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$ At resonance region in multi-GeV: $$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$ Presence of resonance depends: - $v / \overline{v} (A \rightarrow -A)$ - Mass hierarchy (Δm²₃₂→-Δm²₃₂) #### Three Flavor Fit (w/ reactor and T2K constraints) - Perform full parameter fit with additional constraints from reactor (θ_{13}) and T2K public data (Δm^2_{32} and θ_{23}) - Best-fit at NH, $\delta_{CP} \sim 3\pi/2$, $\sin^2\theta_{23} = 0.55$ - Normal hierarchy is slightly preferred $(\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -5.2)$ #### **Best-fit parameters:** | | δ_{CP} | sin²θ ₂₃ | $ \Delta m^2_{32} $ (eV ²) | |----------|---------------|---------------------|--| | Inverted | 4.538 | 0.55 | 2.5x10 ⁻³ | | Normal | 4.887 | 0.55 | 2.4x10 ⁻³ | • p-value of Inverted hypothesis is 0.024 and 0.001 for $\sin^2\theta_{23}$ =0.6 and 0.4, respectively #### **Tau Appearance Analysis** - Detection of tau appearance induced by $\nu_{\mu} \rightarrow \nu_{\tau}$ is critical for verifying three-flavor mixing scheme - Detection is challenging: low signal rate (~1 event / kton year) with huge backgrounds - Search for hadronic modes of tau decay (branching ratio: 65%) ## **Tau Signal Discrimination** - Employ neural network (NN) technique to discriminate tau signal from background - Signal eff. 76%, 26% of background remains by NN>0.5 cut - Tau events have higher NN output and enhanced in upward direction - Perform 2-dim. fit with signal scale parameter: $$Data = PDF_{BG} + \alpha \times PDF_{tau} + \sum \epsilon_i \times PDF_i$$ ### **Tau Appearance Result** - Data: SK-I~IV 5,326 days - Fitted tau normalization: $\alpha = 1.47 \pm 0.32$ (stat+syst) - Observed events: 338.1 ± 72.7 events (exp'd: 224.5) - Excluding no tau appearance hypothesis with 4.6 σ (exp'd 3.3σ) - Still dominated by statistical uncertainty #### **Tau Neutrino Cross Section** - Large sample of CC v_{τ} sample offers the opportunity to measure CC v_{τ} cross section - Sensitive energy: 3.5 ~ 70 GeV - Flux averaged cross section (x10⁻³⁸cm²): measured: 0.94 ± 0.20 theory: 0.64 - Consistent with SM prediction within 1.5 sigma - Larger than scaled σ measured by DONUT at 111 GeV #### **Proton Decay** - Proton decay is predicted by GUTs (Grand Unified Theory) - Provide the method for baryon asymmetry Universe - Open direct path to "Beyond SM" if detected - Many GUT predictions SU(5), SO(10), SUSY GUT - Major decay modes: $P \rightarrow e^+ + \pi^0$, $P \rightarrow \overline{V} + K^+$ ### **Proton Decay Measurement in Super-K** - World leading experiment in proton decay large mass, high efficiency, various modes - Categories: - decay to anti-lepton + meson - decay to $\overline{\mathbf{v}}$ + K (Updated) - others (di-nucleon decay, n- \overline{n} , ..) (S. Mine, NNN16) Recent nucleon decay and n-n results in SK Lifetime lower limit **Decay mode** |∆(B-L)| at 90% CL (years) **p**→e⁺π⁰ 1.6×10^{34} arXiv:1610.03597 (submitted to PRD) $0(\overline{v}), 2(v)$ p→vK⁺ 6.6×10^{33} PRD 90, 072005 (2014) arXiv:1610.03597 (submitted to PRD) $p \rightarrow \mu^+ \pi^0$ 0 7.7×10^{33} $p \rightarrow (e^+, \mu^+)(\eta, \rho, \omega)$, $(0.03-10) \times 10^{33}$ will submit to PRD $n\rightarrow (e^+,\mu^+)(\pi,\rho)$ $p \rightarrow \mu^+ K^0$ PRD 86, 012006 (2012) 1.6×10^{33} $\vec{n} \rightarrow v\pi^0, \vec{p} \rightarrow v\pi^+$ 1.1×10^{33} , 3.9×10^{32} PRL 113, 121802 (2014) $\begin{array}{c} 0(\overline{\nu}\nu), \\ 2(\nu\nu,\overline{\nu}\overline{\nu}) \end{array}$ $1.7/2.2 \times 10^{32}$ PRL 113, 101801 (2014) $p \rightarrow (e^+, \mu^+) \nu \nu$ PRL 115, 121803 (2015) $7.9/4.1 \times 10^{32}$ $p \rightarrow (e^+, \mu^+)X$ 0(v), 2(v) 5.5×10^{32} PRL 115, 121803 (2015) n→vγ 1.7×10^{32} PRL 112, 131803 (2014) pp→K+K+ $pp \rightarrow \pi^+\pi^+$, $pn \rightarrow \pi^+\pi^0$. 7.2×10^{31} , 1.7×10^{32} PRD 91, 072009 (2015) $nn \rightarrow \pi^0 \pi^0$ 4.0×10^{32} PRL 115, 121803 (2015) $np \rightarrow (e^+, \mu^+, \tau^+)v$ $0(\bar{v}), 2(v)$ $(0.22-5.5) \times 10^{32}$ n-n oscillation 2 1.9×10^{32} PRD 91, 072006 (2015) (*) published in PRD 95, 012004 (2017) #### Limits on decay modes of anti-lepton + meson ^(**) published in PRD 96, 012003 (2017) ## Search for $P \rightarrow \overline{v} + K^+$ Decay - Single mono-energetic muon ($P\mu$ =236MeV/c) from K+ decay with following μ -e decay - Require prompt 6 MeV gamma from excited oxygen nuclei - Search for $\pi^0 \rightarrow 2\gamma$ decay ($P\pi^0=205 \text{MeV/c}$) event with faint π^+ activity in backward direction ### Search for $P \rightarrow \overline{v} + K^+$ Decay (A) $$K^+ \to \nu_{\mu} + \mu^+$$ | | SK1 | | | SK2 | | SK3 | | | SK4 | | | | |--------------|-------------|------------|-------------|--------------|------------|-------------|-------------|------------|-------------|-------------|------------|-------------| | | Eff
(%) | BG
(ev) | Obs
(ev) | | Pr.γ | 7.9
±0.1 | 0.078 | 0 | 6.5
±0.1 | 0.082 | 0 | 7.5
±0.1 | 0.018 | 0 | 9.4
±0.1 | 0.112 | 0 | | $\pi^+\pi^0$ | 7.8
±0.1 | 0.21 | 0 | 6.5
± 0.1 | 0.19 | 0 | 8.3
±0.1 | 0.07 | 0 | 9.6
±0.1 | 0.13 | 0 | - No candidate events are observed for both modes in 349 kton-year exposure - Lifetime limit: $>8.0 \times 10^{33}$ years (90% C.L.) ## **Summary** #### **Atmospheric Neutrino:** - Various features of atmospheric neutrinos allow us to test three flavor mixing scheme. - Resonance oscillation by matter effect in multi-GeV is sensitive to mass hierarchy. According to oscillation fit to data with reactor and T2K constraints, normal hierarchy is slightly preferred. - Tau appearance has improved to 4.6 sigma. Measured larger v_{τ} cross section than prediction though still consistent with theory. #### **Proton Decay:** - Unique method to probe GUT theory. Super-K has been contributing to explore the possibility of this new "beyond SM" physics. - The analysis of $P \rightarrow \overline{V} + K^+$ has been updated. There were no candidate events observed from the searches of two K⁺ decay modes. Lower lifetime limit has been improved to 8.0x10³³ yrs. # **END**