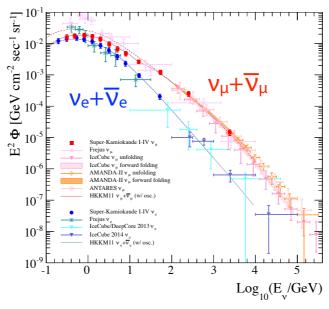
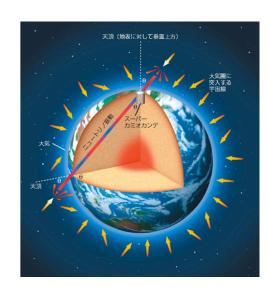
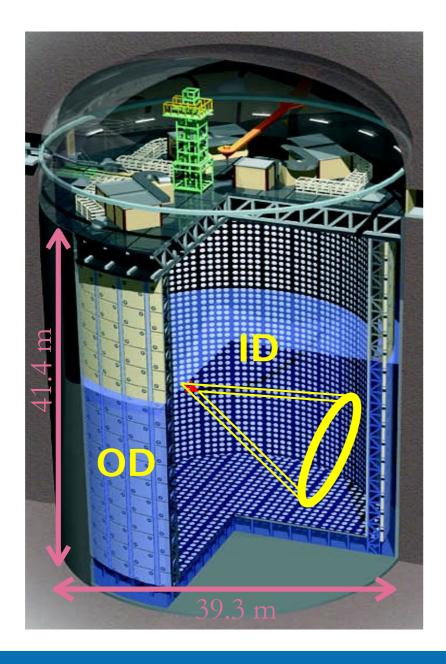

Atmospheric Neutrino and Proton Decay Results in Super-Kamiokande

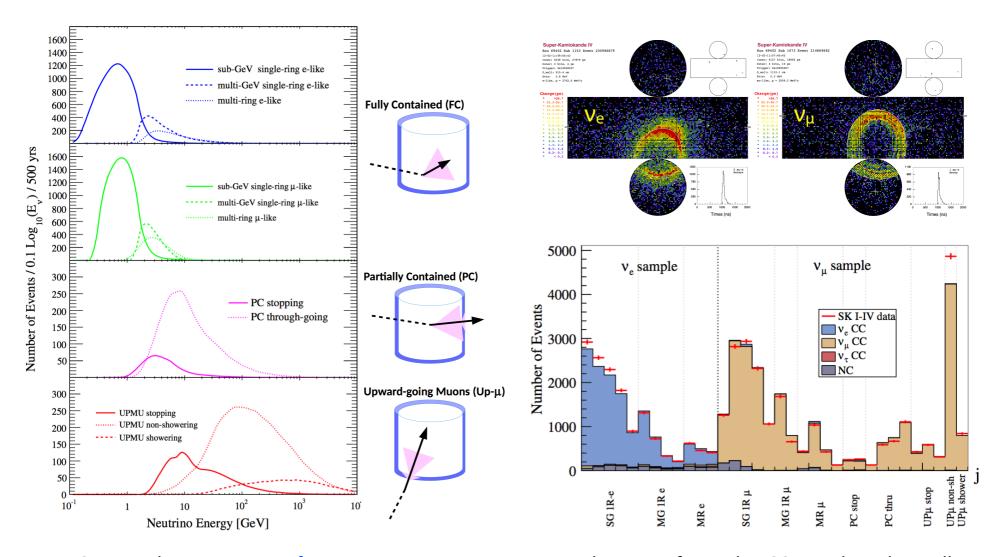




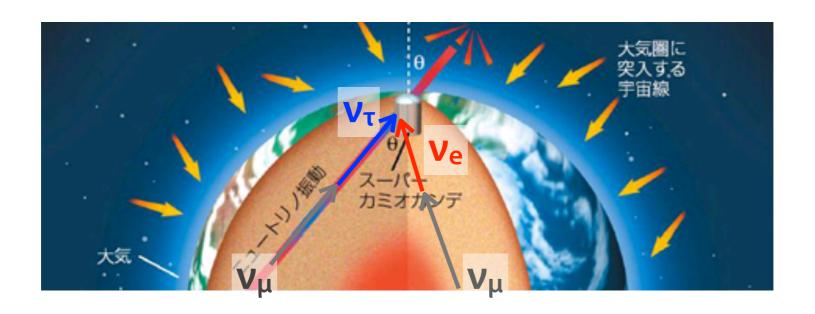
Atmospheric Neutrinos



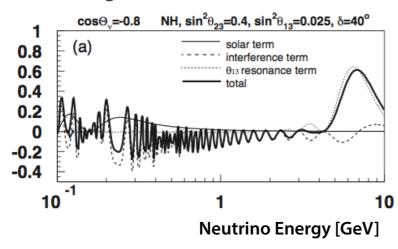
- Decay products of secondaries by cosmic ray interactions with atmosphere. (v_{μ} : $v_{e} \sim 2:1$ at GeV energy)
- Power-law like energy spectrum. Affected by cutoff due to geomagnetic field below several GeV.
- Path length: distributed in O(10)km ~ 13,000km
 depending on zenith angle direction
- Neutrino oscillation driven by Δm^2_{32} below O(10) GeV


Super-Kamiokande Detector

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- 50 kton volume (fiducial 22.5 kton)
- 11129 20" PMTs in inner detector (ID) for Cherenkov ring imaging
- 1885 8" PMTs for outer detector (OD)

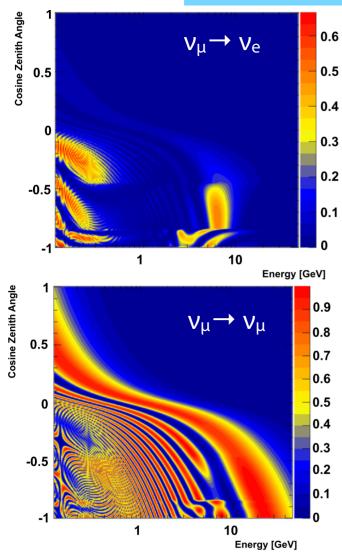

Phase	Period	# of PMTs
SK-I	1996.4 ~ 2001.7	11146 (40%)
SK-II	2002.10 ~ 2005.10	5182 (20%)
SK-III	2006.7 ~ 2008.8	11129 (40%)
SK-IV	2008.9 ~	11129 (40%)

Super-K Atmospheric Event Sample



- Cover wide energy range from 100 MeV up to 10 TeV with three different event topologies
- High purity of v_{μ} and v_{e} CC sample with excellent particle ID performance

Atmospheric Oscillation Physics


ve flux change due to sub-dominant oscillation: •

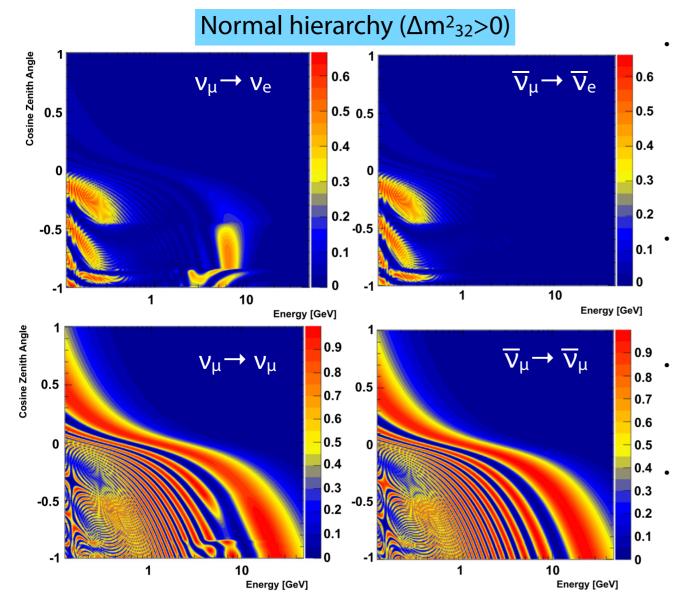
- Many opportunities to test three flavor mixing:
 - v_{μ} disappearance by v_{μ} -> v_{τ} (Δm^2_{32} , θ_{23})
 - Sub-dominant oscillation in v_e sample: mass hierarchy (sign of Δm^2_{32}), δ_{CP} , θ_{23} octant
 - v_{τ} appearance
- Exotic mode (sterile, NSI, ..)

Matter Effect and Mass Hierarchy

Normal hierarchy ($\Delta m^2_{32} > 0$)

 Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt} = H_0
u(t) \qquad H_0
ightarrow H_0 + rac{1}{2E} \left(egin{array}{cc} A & 0 \ 0 & 0 \end{array}
ight) \ A = \pm 2\sqrt{2}G_FE_
u n_e$$


Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$

At resonance region in multi-GeV:

$$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$

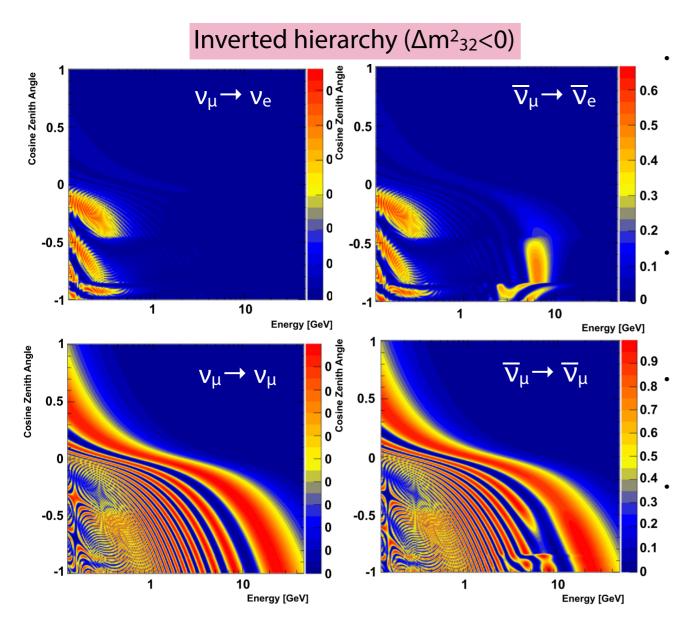
Matter Effect and Mass Hierarchy

Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt}=H_0
u(t) \qquad H_0 o H_0+rac{1}{2E}\left(egin{array}{cc} A & 0 \ 0 & 0 \end{array}
ight) \ A=\pm2\sqrt{2}G_EE_
un_e$$

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$


At resonance region in multi-GeV:

$$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$

Presence of resonance depends:

$$- v / \overline{V} (A \rightarrow -A)$$

Matter Effect and Mass Hierarchy

Neutrino is affected by additional potential due to forward scattering with electrons (matter effect)

$$irac{d
u(t)}{dt}=H_0
u(t) \qquad H_0 o H_0+rac{1}{2E}\left(egin{array}{cc} A & 0 \ 0 & 0 \end{array}
ight) \ A=\pm2\sqrt{2}G_EE_
un_e$$

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$

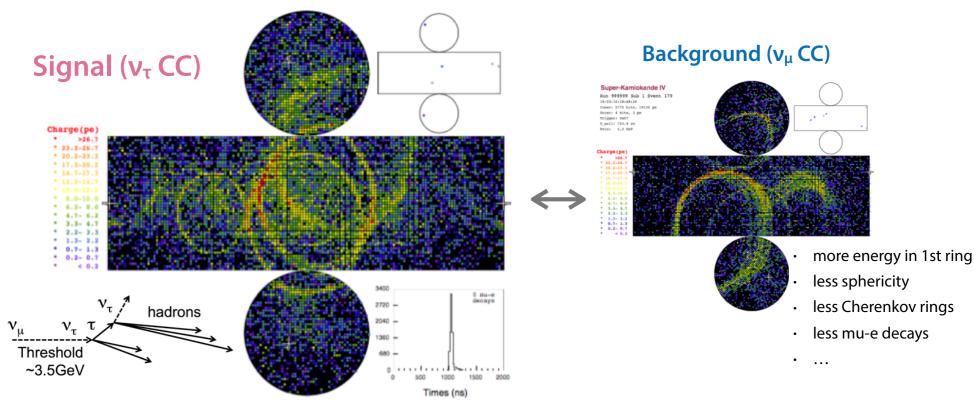
At resonance region in multi-GeV:

$$A \sim \Delta m_{32}^2 \cos 2\theta_{13} \rightarrow \theta_{13}^M \gg \theta_{13}$$

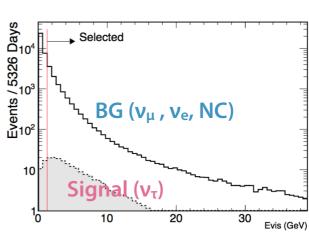
Presence of resonance depends:

- $v / \overline{v} (A \rightarrow -A)$
- Mass hierarchy (Δm²₃₂→-Δm²₃₂)

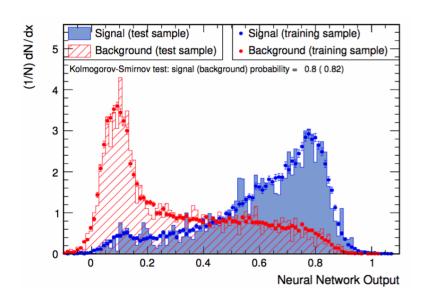
Three Flavor Fit (w/ reactor and T2K constraints)


- Perform full parameter fit with additional constraints from reactor (θ_{13}) and T2K public data (Δm^2_{32} and θ_{23})
- Best-fit at NH, $\delta_{CP} \sim 3\pi/2$, $\sin^2\theta_{23} = 0.55$
- Normal hierarchy is slightly preferred $(\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -5.2)$

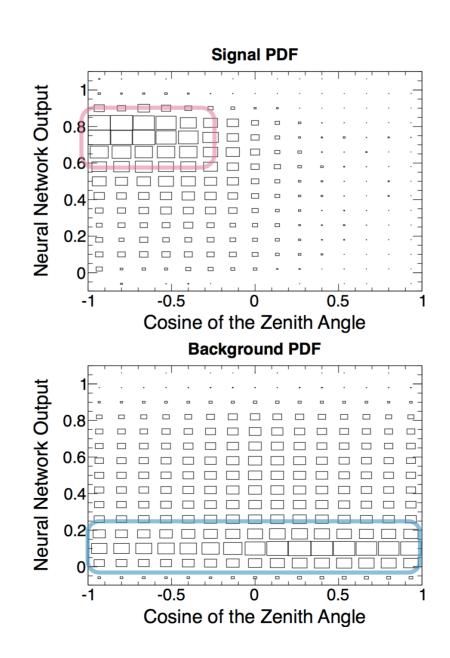
Best-fit parameters:


	δ_{CP}	sin²θ ₂₃	$ \Delta m^2_{32} $ (eV ²)
Inverted	4.538	0.55	2.5x10 ⁻³
Normal	4.887	0.55	2.4x10 ⁻³

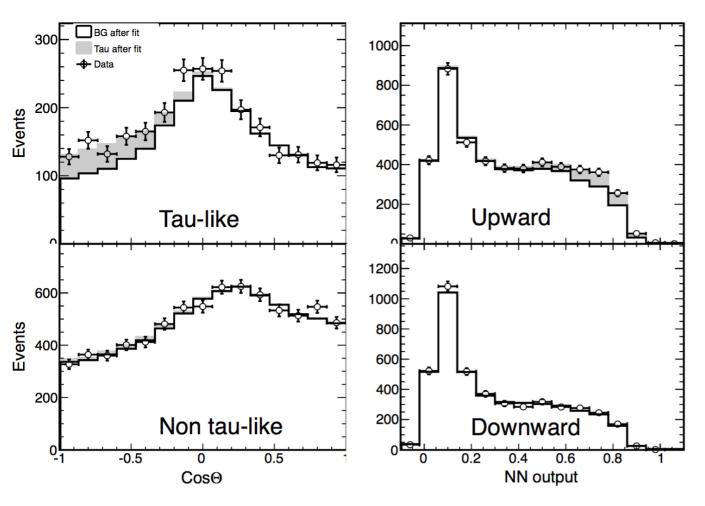
• p-value of Inverted hypothesis is 0.024 and 0.001 for $\sin^2\theta_{23}$ =0.6 and 0.4, respectively


Tau Appearance Analysis

- Detection of tau appearance induced by $\nu_{\mu} \rightarrow \nu_{\tau}$ is critical for verifying three-flavor mixing scheme
- Detection is challenging: low signal rate (~1 event / kton year) with huge backgrounds
- Search for hadronic modes of tau decay (branching ratio: 65%)

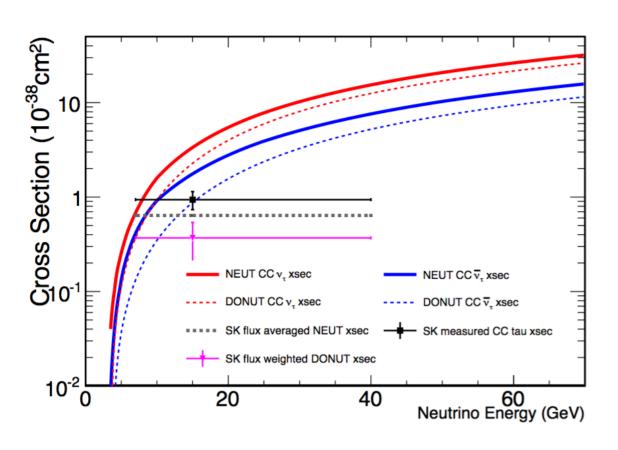


Tau Signal Discrimination



- Employ neural network (NN) technique to discriminate tau signal from background
 - Signal eff. 76%, 26% of background remains by NN>0.5 cut
- Tau events have higher NN output and enhanced in upward direction
- Perform 2-dim. fit with signal scale parameter:

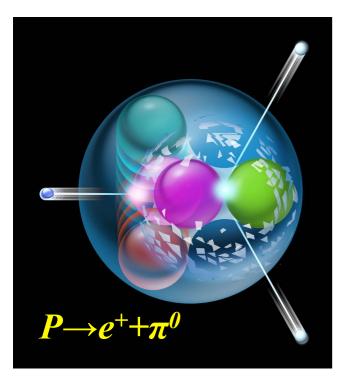
$$Data = PDF_{BG} + \alpha \times PDF_{tau} + \sum \epsilon_i \times PDF_i$$

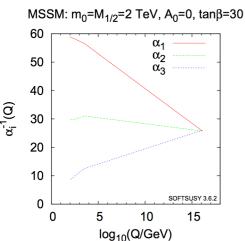


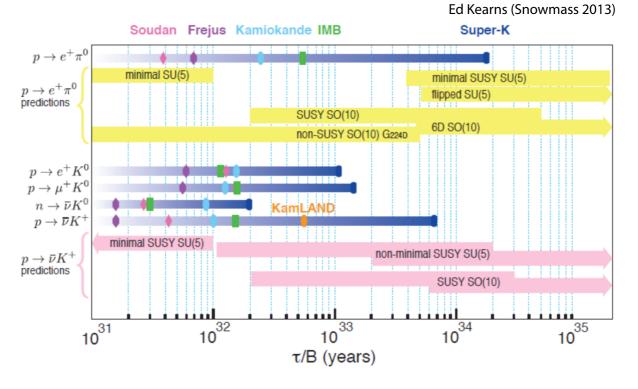
Tau Appearance Result

- Data: SK-I~IV 5,326 days
- Fitted tau normalization: $\alpha = 1.47 \pm 0.32$ (stat+syst)
 - Observed events:
 338.1 ± 72.7 events
 (exp'd: 224.5)
- Excluding no tau appearance hypothesis with 4.6 σ (exp'd 3.3σ)
- Still dominated by statistical uncertainty

Tau Neutrino Cross Section


- Large sample of CC v_{τ} sample offers the opportunity to measure CC v_{τ} cross section
- Sensitive energy: 3.5 ~ 70 GeV
- Flux averaged cross section (x10⁻³⁸cm²):

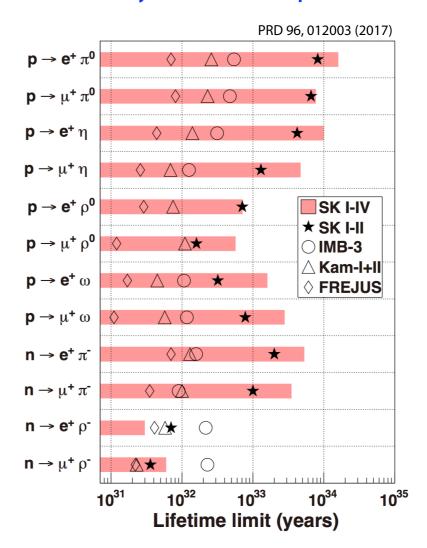

measured: 0.94 ± 0.20


theory: 0.64

- Consistent with SM prediction within 1.5 sigma
- Larger than scaled σ measured by DONUT at 111 GeV

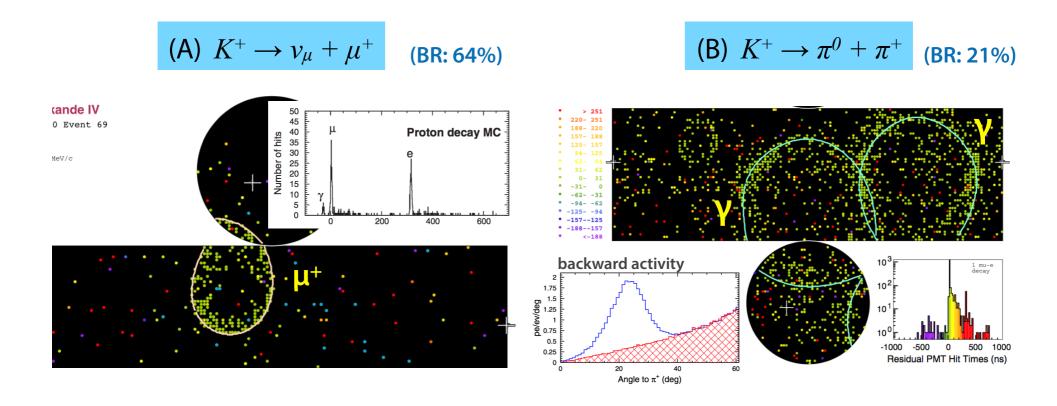
Proton Decay

- Proton decay is predicted by GUTs (Grand Unified Theory)
 - Provide the method for baryon asymmetry Universe
 - Open direct path to "Beyond SM" if detected
- Many GUT predictions SU(5), SO(10), SUSY GUT
- Major decay modes: $P \rightarrow e^+ + \pi^0$, $P \rightarrow \overline{V} + K^+$


Proton Decay Measurement in Super-K

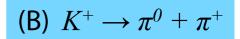
- World leading experiment in proton decay large mass, high efficiency, various modes
- Categories:
 - decay to anti-lepton + meson
 - decay to $\overline{\mathbf{v}}$ + K (Updated)
 - others (di-nucleon decay, n- \overline{n} , ..)

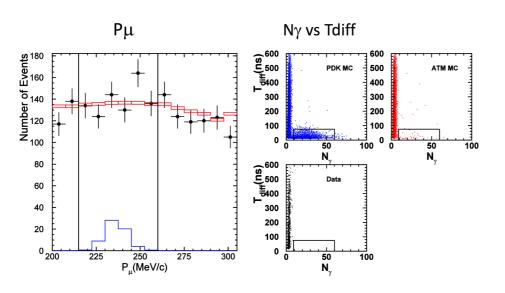
(S. Mine, NNN16) Recent nucleon decay and n-n results in SK Lifetime lower limit **Decay mode** |∆(B-L)| at 90% CL (years) **p**→e⁺π⁰ 1.6×10^{34} arXiv:1610.03597 (submitted to PRD) $0(\overline{v}), 2(v)$ p→vK⁺ 6.6×10^{33} PRD 90, 072005 (2014) arXiv:1610.03597 (submitted to PRD) $p \rightarrow \mu^+ \pi^0$ 0 7.7×10^{33} $p \rightarrow (e^+, \mu^+)(\eta, \rho, \omega)$, $(0.03-10) \times 10^{33}$ will submit to PRD $n\rightarrow (e^+,\mu^+)(\pi,\rho)$ $p \rightarrow \mu^+ K^0$ PRD 86, 012006 (2012) 1.6×10^{33} $\vec{n} \rightarrow v\pi^0, \vec{p} \rightarrow v\pi^+$ 1.1×10^{33} , 3.9×10^{32} PRL 113, 121802 (2014) $\begin{array}{c} 0(\overline{\nu}\nu), \\ 2(\nu\nu,\overline{\nu}\overline{\nu}) \end{array}$ $1.7/2.2 \times 10^{32}$ PRL 113, 101801 (2014) $p \rightarrow (e^+, \mu^+) \nu \nu$ PRL 115, 121803 (2015) $7.9/4.1 \times 10^{32}$ $p \rightarrow (e^+, \mu^+)X$ 0(v), 2(v) 5.5×10^{32} PRL 115, 121803 (2015) n→vγ 1.7×10^{32} PRL 112, 131803 (2014) pp→K+K+ $pp \rightarrow \pi^+\pi^+$, $pn \rightarrow \pi^+\pi^0$. 7.2×10^{31} , 1.7×10^{32} PRD 91, 072009 (2015) $nn \rightarrow \pi^0 \pi^0$ 4.0×10^{32} PRL 115, 121803 (2015) $np \rightarrow (e^+, \mu^+, \tau^+)v$ $0(\bar{v}), 2(v)$ $(0.22-5.5) \times 10^{32}$ n-n oscillation 2 1.9×10^{32} PRD 91, 072006 (2015)

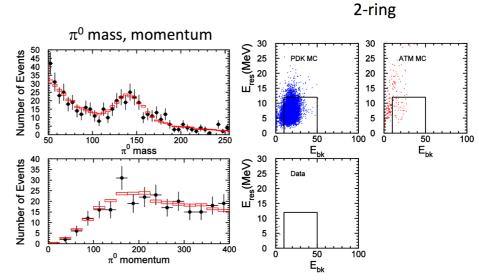

(*) published in PRD 95, 012004 (2017)

Limits on decay modes of anti-lepton + meson

^(**) published in PRD 96, 012003 (2017)


Search for $P \rightarrow \overline{v} + K^+$ Decay




- Single mono-energetic muon ($P\mu$ =236MeV/c) from K+ decay with following μ -e decay
- Require prompt 6 MeV gamma from excited oxygen nuclei
- Search for $\pi^0 \rightarrow 2\gamma$ decay ($P\pi^0=205 \text{MeV/c}$) event with faint π^+ activity in backward direction

Search for $P \rightarrow \overline{v} + K^+$ Decay

(A)
$$K^+ \to \nu_{\mu} + \mu^+$$

	SK1			SK2		SK3			SK4			
	Eff (%)	BG (ev)	Obs (ev)	Eff (%)	BG (ev)	Obs (ev)	Eff (%)	BG (ev)	Obs (ev)	Eff (%)	BG (ev)	Obs (ev)
Pr.γ	7.9 ±0.1	0.078	0	6.5 ±0.1	0.082	0	7.5 ±0.1	0.018	0	9.4 ±0.1	0.112	0
$\pi^+\pi^0$	7.8 ±0.1	0.21	0	6.5 ± 0.1	0.19	0	8.3 ±0.1	0.07	0	9.6 ±0.1	0.13	0

- No candidate events are observed for both modes in 349 kton-year exposure
- Lifetime limit: $>8.0 \times 10^{33}$ years (90% C.L.)

Summary

Atmospheric Neutrino:

- Various features of atmospheric neutrinos allow us to test three flavor mixing scheme.
- Resonance oscillation by matter effect in multi-GeV is sensitive to mass hierarchy.
 According to oscillation fit to data with reactor and T2K constraints, normal hierarchy is slightly preferred.
- Tau appearance has improved to 4.6 sigma. Measured larger v_{τ} cross section than prediction though still consistent with theory.

Proton Decay:

- Unique method to probe GUT theory. Super-K has been contributing to explore the possibility of this new "beyond SM" physics.
- The analysis of $P \rightarrow \overline{V} + K^+$ has been updated. There were no candidate events observed from the searches of two K⁺ decay modes. Lower lifetime limit has been improved to 8.0x10³³ yrs.

END