PandaX-III: Ovßß search at CJPL

000

TAUP

Ke Han (韩柯) **Constant Provide Antibolity** Shanghai Jiao Tong University On behalf of the PandaX-III Collaboration

FAUP 2017, SNOLab

Ke Han (SJTU) for PandaX-III

Detection of double beta decay

Sum of two electrons energy

• Example:

 ${}^{136}Xe \rightarrow {}^{136}Ba + 2e^- + (2\overline{\nu_e})$

- Measure energies of emitted e⁻
- Electron tracks are a huge plus
- Daughter nuclei identification

Simulated track of $0\nu\beta\beta$ in high pressure Xe

PandaX-III: high pressure gas TPC for $0\nu\beta\beta$ of ¹³⁶Xe

- TPC: 200 kg scale, symmetric, double-ended charge readout, with 10 bar of ¹³⁶Xe
- Main features: good energy resolution and background suppression with tracking

PandaX Projects

Dark matter WIMP searches

See Ning Zhou's Talk

PandaX-I: 120kg LXe (2009 – 2014) PandaX-II: 500kg LXe (2014 – 2018)

PandaX-xT LXe (Future)

0vββ searches

PandaX-III: 200kg - 1 ton HPXe (Future)

TAUP 2017, SNOLab

PandaX-III collaboration

- China: Shanghai Jiao Tong University, University of Science and Technology of China, Peking University, China Institute of Atomic Energy, Shandong University, Sun Yat-Sen University, Central China Normal University
- Spain: Universidad de Zaragoza
- France: CEA Saclay
- US: University of Maryland, Lawrence Berkeley National Laboratory
- Thailand: Suranaree University of Technology

PandaX-III TPC illustrated

- ~4m³ active volume
- 10 bar working pressure
- ~10000 readout channels
- Xe+TMA gas mixture
- Charge-only readout with
 - microbulk Micromegas

Microbulk MicroMegas (MM)

- ٠
- Microbulk MicroMegas films made of Copper ٠ and Kapton only
 - Perfect for radio-purity purpose ٠
 - 20 by 20 cm ٠
 - XY strip readout
 - 3 mm pitch size, 128 strip readouts
 - ~ 1000X gain with Xe+TMA
 - 3% energy resolution expected at 2.5 MeV.
 - Mosaic layout to cover readout planes ٠
 - Scalable Radio-pure Readout Module • (SR2M)

Ke Han (SJTU) for PandaX-III

From MM films to SR2M

Ke Han (SJTU) for PandaX-III

Electronics

- ASIC AGET chips: generic electronics for TPC from CEA-Saclay
 - 350 nm CMOS, mature technology
 - 64 channel multiplex
 - 512 sampling point per channel
 - 12 bit ADC
 - Dynamic range up to 10 pC
 - Sampling rate: 1 MHz to 100 MHz

- Commercial daq suite ASAD+CoBo tested and used for our prototype TPC
- Two versions of custom front end electronics card designed and tested
- AGET performance tested and validated

Prototype TPC at SJTU

- 16 kg of xenon at 10 bar (active mass within TPC)
 - Single-ended TPC
- Data taking with Ar, Xe, Xe+TMA at different pressures
- Two Micromegas modules installed. Movable source used for calibration

Commissioning the prototype TPC

Muon track

TAUP 2017, SNOLab

Ke Han (SJTU) for PandaX-III

PandaX hall at CJPL-II

CJPL phase II Experiments

- PandaX projects
- CDEX WIMP search
- JUNA (accelerator)

.

• Geo/Solar neutrino detector

- Extra excavation for the water shielding pool (finished)
- Shared facility of DM and 0vββ searches

Class 10000 clean room TAUP 2017, SNOLab Semi clean area Ke Han (SJTU) for PandaX-III

Background budget

Two independent Geant-4 based MC packages: RESTG4 and BambooMC

- Treat PandaX-III as a simple calorimeter
- Then add detector response
- Calculate signal efficiency and background rejection
- ×35 background reduction from topological analysis
 - Track reconstruction and blob identification at both ends
 - Convoluted neural network

Energy(kev)

Sensitivity projection

- First 200-kg module:
 - Microbulk Micromegas for charge readout
 - 3% FWHM, 1 x 10⁻⁴ c/keV/kg/y in the ROI
- Ton-scale:
 - Four more modules with upgraded charge readout and better low-background material screening.
 - 1% FWHM, 1 x 10⁻⁵ c/keV/kg/y in the ROI

Future energy resolution improvement

- TopMetal Direct Charge Sensor
 - Direct pixel readout without gas amplification
 - First 10x10 cm readout plane in production
 - (See Yuan Mei's talk)

- Alternative Micromegas technologies
 - Improvement on bulk and microbulk technologies

Conclusion

- PandaX-III uses high pressure xenon TPCs to search for double beta decay
- Phased approach: 200 kg first, then ton-scale with multiple modules
- 20-kg scale prototype TPC has been built and under commissioning
- PandaX Hall B2 at CJPL-II is being furbished for future 0vββ and dark matter detectors.
- More details from our CDR: ArXiv:1610.08883

High pressure vessel

- High gas pressure and radio-pure
- Baseline approach: oxygen-free copper welded with E-beam technique
 - 15 cm thick end caps
 - 3.2 cm thick side wall
 - About 9 ton of OFHC copper
 - Technologically challenging
 - Still a major contributor to our background budget
- Alternatively:
 - Titanium vessel with copper lining

Longitudinal weld joint, higher stress

	Isotope	Activity	Background (CPY)		BI (10 ⁻⁵ c/(keV·kg·y))	
			BambooMC	RestG4	BambooMC	RestG4
Laboratory walls	²³⁸ U	9.9 Bq/kg	$< 0.40 \pm 0.03$	$< 0.09 \pm 0.01$	-	< 0.4
	²³² Th	4.4 Bq/kg	$< 0.22 \pm 0.02$	$<0.15\pm0.01$	-	< 0.6
Water	²³⁸ U	0.12 µBq/kg	0.20 ± 0.1	0.22 ± 0.03	0.74	0.86
	²³² Th	$0.04 \ \mu Bq/kg$	0.24 ± 0.06	0.55 ± 0.03	0.96	2.21
Barrel	²³⁸ U	0.75 <i>µ</i> Bq/kg	1.73 ± 0.12	1.77 ± 0.1	6.9	7.05
	²³² Th	$0.2 \mu \text{Bq/kg}$	4.63 ± 0.18	4.55 ± 0.05	18.5	18.2
	⁶⁰ Co	$10 \mu \text{Bq/kg}$	9.8 ± 1.0	9.9 ± 0.9	39.0	39.7
End-caps	²³⁸ U	0.75 µBq/kg	0.83 ± 0.11	0.90 ± 0.11	3.3	3.6
	²³² Th	$0.2 \mu \mathrm{Bq/kg}$	2.4 ± 0.1	2.2 ± 0.1	9.8	9.0
	⁶⁰ Co	$10 \mu \mathrm{Bq/kg}$	4.4 ± 1.0	4.2 ± 0.9	17.8	16.7
Bolts	²³⁸ U	0.5 mBq/kg	7.5 ± 1.5	7.3 ± 0.9	30.1	29.2
	²³² Th	0.32 mBq/kg	39.8 ± 2.7	46.7 ± 1.9	159	186.3
Field insulator	²³⁸ U	4.94 µBq/kg	15.0 ± 0.5	15.7 ± 0.3	59.9	62.6
	²³² Th	$0.1 \mu \mathrm{Bq/kg}$	2.69 ± 0.03	2.61 ± 0.1	10.7	10.4
and rings	²³⁸ U	$0.75 \mu \mathrm{Bq/kg}$	0.67 ± 0.01	0.72 ± 0.05	2.7	2.9
	²³² Th	$0.2 \mu \text{Bq/kg}$	0.95 ± 0.01	0.92 ± 0.03	3.8	3.7
Electronics	²³⁸ U	0.26 Bq	1.0 ± 0.3	2.4 ± 0.5	4.2	9.5
	²³² Th	0.07 Bq	2.8 ± 0.2	4.1 ± 0.5	11.3	16.3
Micromegas	²³⁸ U	45 nBq/cm ²	60.5 ± 1.7	63.7 ± 1.8	241.6	254.4
	²³² Th	14 nBq/cm ²	23.5 ± 0.6	25.3 ± 0.6	93.9	101
Cathode	²¹⁴ Bi	2 nBq/cm ²	4.1 ± 0.2	3.3 ± 0.1	16.5	13.2

Table 5The raw background contribution from different parts in the laboratory and the detector by taking the 3% FWHM detector resolution into account.BI stands for Background Index.

