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DM Indirect Detection: p-wave challenge JG‘U

Direct detection
e nuclear recoils from DM scattering
@ Collider searches
e typical signal: missing energy + mono object
e Indirect detection (our focus)
o classified by annihilation product: ~, v, e™...

@ p-wave annihilation is generally harder to detect than s-wave

(ov) = ogv?

at freeze out (ov) = oov2 ~ 1072cm3/s, v2 ~ 0.26
today v ~ 1073 for DM in galaxy, suppressed by v? ~ 1070
generally very weak constraint from indirect detection

@ can p-wave annihilation has stronger signal than s-wave?
e Yes, dark gamma ray burst!
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DM Indirect detection from Sun

Py X velocity
distribution

v interactions

© v from Sun: IceCube, ANTARES and Super-K

history back to 1985, Silk et al, Krauss et al...

@ metastable mediator from Sun: e.g. A’

(Schuster et alx2, Bell et al, Meade et al, Batell et al, Feng et al)



DM annihilation from the Sun

Capture and Annihilation (dN/dt = Ce,p
@ Conditions:

Cann N2)

Caszéjz? = N2 fd r (0 Veel) nDM( r)~ 105351

o Cop=12; fo Retar gy 47012 dc(r) ~ 1022571

e parameters: mpy = 100GeV 05 =10
and (oviel) =3 x 10726cm3s1

—40 cm2
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DM annihilation from the Sun

Capture and Annihilation (dN/dt = C.,, — C.,,N?)

@ Conditions:
o Coin=7 fd3 (0 Veet) M3 (r) ~ 10753571
o Cap=1>; fo " dr 47 r? —dg\(/r) 102251
e parameters: mpy = 100GeV/, 05 =10
and (oviel) =3 x 10726cm3s1
@ Results:
o N(t)= 1/%tanhé — % ~ 10%7
0 teg = 1/ Ceap Cann ~ 10155, tsun = 10%7s
° C?nnN - Ccap = 10 s

—40 cm2




N
DM annihilation from the Sun

Capture and Annihilation (dN/dt = Ce,p — Cann/\/2)
@ Conditions:
° C?S,;Jnn = # fd3r <O'Vre|> n2DM(r) ~ 10753571
° Ccap — Zi fORstardr 47Tr2 dg,'\(/r) ~ 1022571
e parameters: mppy = 100GeV/, JgD = 10~%0¢cm?
and (oviel) =3 x 10726cm3s1

@ Results:
o N(t) = /<2 tanh £ — /S22 ~ 10%

o tog =1//CeapConn ~ 10%s, tg,, = 10%7s
o C,pplN? = Ceap = 10?251
© Conclution: Capture and Annihilation is in
Equilibrium!

@ If in equilibrium, no difference between s-wave and
p-wave annihilation
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DM annihilation from Supernova

Tracing DM accumulation in a massive star

@ Same as Sun

dN/dt == Ccap - Ca/mNz + Cse/fN

@ Different from Sun

O(108) further than Sun, ~ lkpc

much heavier than Sun, 2 8Ms,,

O(1072) shorter lifetime ~ 10'°s

density, temperature and chemical composition
changes with time much faster

Capture and Annihilation is Not in Equilibrium!
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@ Assumptions

o Quasi-instantaneous thermalization
o fermionic DM annihilates to O(1)GeV light mediator: dark photon
(s-wave) or dark scalar (p-wave)
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DM annihilation from Supernova: preparation @

@ Assumptions

o Quasi-instantaneous thermalization
o fermionic DM annihilates to O(1)GeV light mediator: dark photon
(s-wave) or dark scalar (p-wave)

@ Parameters
e pi(r,t) and T(r,t) from Herger et al
mpm € [10,10%]GeV, 03P = 1070 cm?, o3 = 10~%6cm?
(ovrel) fixed by relic abundance, Sommerfeld enhancement considered
o Galactic DM density p%),: Einasto profile

© DM evolution
Nom (t) = Ceap(t) = Cann(£)Nom(2) + Cecre(1) Nom(t)
o Cop =22 Jo=dr drr? 4500
o ConNgy = [d°r (0Veal) ”2DM(’)
nom(r) = no exp[—mpme(r)/ Tom]
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DM Distribution in the Star JG‘U
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@ DM concentrated in the star as expected
o npm(r) = no exp[—mpmo(r)/ Towm]

@ p-wave DM has higher Npy, than s-wave!
o Nom(t) = Ceap(t) = Conn(t)Nom(t)?



DM Evolution in the Star
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© Capture and Annihilation is Not in Equilibrium!
o after t < 10%s, Npm does not change due to too short time
o lighter DM has larger Npy due to larger C.,p, and smaller C,,
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DM Annihilation Burst during Supernova JG‘U

e Assumption

Iron core collapse to proto-neutron star (size ~ 30km)
psn ~ 10 g/cm3 reaches nuclear density
Conservatively taking DM particles within Reoe ~ 30km
DM gets thermalized within 10=7 ~ 107° seconds

high DM density leads to dark gamma ray burst
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DM Annihilation Burst during Supernova JG‘U

e dark Gamma ray burst, last 10 ~ 103 seconds
o Nom(t) = Ceap(t) — Conn(t)Nom(t)?
° NDM(t) = 1-i-+%ﬂf/\lo’ Atgyy ~ (CaSn/xNo)_l

SN ann

3/2
o CoN = (V) (GNQ?MPSN) AN ~ (CSVN2) Atgyr o No

T, 7%x10%

04=10"*%cm?
gsp=10"*"cm?
8134:03 GeVem™

allowed
— — — not allowed

for 102 10°
dark matter mass [GeV]

time averaged annihilation rate [sec
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Dark Gamma Ray Burst JG‘U

Properties

@ The mediator decay gives
dN,/dE,
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@ Benchmark locations: 0.1kpc
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p-wave, O(10?) sec for s-wave
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Dark Gamma Ray Burst

G, Fermi-LAT
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Results
@ p-wave has larger photon flux than s-wave!
@ The best signal is around mpy ~ O(100) GeV
o CTA duty cycle is 10%
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Summary for Dark Gamma Ray Burst JG‘U

@ We have computed the evolution of the DM core in massive star until
core collapse

@ General process: Npy T Ceap dominates, Npy | C.,, dominates
especially for s-wave, Npys unchanged due to too short time

p-wave DM accumulates more N,%M than s-wave

Total emission AN ~ N,OJM, more photons from p-wave annihilation
Such dark gamma ray burst can be detected by CTA for p-wave DM
The is around

A unique example: p-wave DM better in indirect detection than
s-wave

We need luck to see dark gamma ray burst signal

Thanks for your attention!
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Backup slides JG‘U C
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@ larger Cc,p due to more DM particles, more efficient

@ smaller ratio between s-wave and p-wave in C,,, because of
Sommerfeld enhancement
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