Status of the TREX-DM experiment at the Canfranc Underground Laboratory

•	Motivation and goals
•	Detector description
•	Detector performance
•	Background model
•	Sensitivity
•	Work plan

S. Cebrián, on behalf of the TREX-DM team

¹CEA Irfu, Centre de Saclay, F-91191 Gif-sur-Yvette, France

²Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain ³Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain ⁴Institut de Física d'Alter Energies, IEAE, Bargelong, Spain

⁴Institut de Física d'Altes Energies, IFAE, Barcelona, Spain

Motivation and goals

Requirements to search for low mass WIMPs:

- Very low energy **threshold** (<1 keV_{ee})
- Light elements as target
- Radiopure componentes to reduce background

TREX-DM

(TPC for Rare Event eXperiments-Dark Matter) conceived to

- look for low mass WIMPs
- using a gas Time Projection Chamber holding
- 20 I of pressurized gas (flexible target: ~0.3 kg Ar, ~0.16 kg Ne at 10 b)
- equipped with novel micromesh gas structures (Micromegas) readouts
- at the Canfranc Underground Laboratory (Spain)

Status: approved experiment by the Scientific Committee, at the commissioning phase

Detector: Micromegas

- Micromegas are consolidated readout structures:
- simple, high granularity, large surfaces
- Different technologies:
- Classical (CAST, COMPASS, ATLAS)
- Bulk (T2K, CLAS-12, nTOF, MIMAC)
- Microbulk: more homogeneus, radiopure (CAST, nTOF)

- Important advantages for rare event detection:
 - **Topological information**: to discriminate backgrounds from expected signal by dark matter (few microns track \rightarrow point-like event)
 - Scaling-up

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Detector: Micromegas

- Important advantages for Rare Event detection:
 - Low intrinsic radioactivity: made out of kapton and copper, potentially very clean

First screening using a germanium detector in
Canfranc
S. Cebrián et al, Astropart. Phys. 34 (2011) 354

• More sensitive measurements using the BiPo-3 detector at Canfranc and a germanium detector for more massive samples

#	Material,Supplier	Method	Unit	$^{214}\mathrm{Bi}$	208 Tl
16	Microbulk Micromegas, $CAST/CERN$	BiPo-3	$\mu {\rm Bq/cm^2}$	< 0.134	< 0.035
17	Cu-kapton-Cu foil, CERN	BiPo-3	$\mu { m Bq/cm^2}$	< 0.141	< 0.012
18	Kapton-epoxy foil, CERN	BiPo-3	$\mu { m Bq/cm^2}$	< 0.033	< 0.008
19	Vacrel foil, Saclay	BiPo-3	$\mu { m Bq/cm^2}$	< 0.032	< 0.013
20	Kapton-diamond foil, CERN	BiPo-3	$\mu \rm Bq/cm^2$	< 0.055	$<\!0.016$

$^{\textbf{40}}\textbf{K:}$ (3.45 ± 0.40) $\mu Bq/cm^2$

$< 2.3 \ \mu Bq/cm^2$

(in a sample without holes produced by kapton etching containing potassium)

I.G. Irastorza et al, JCAP 01 (2016) 033

Detector: vessel + field cage

• **Detector** as built at University of Zaragoza (non fully radiopure)

Two active volumes: 19 x 25 x 25 cm³ each Field cage: kapton & copper + resistors, covered by Teflon Bulk MM: 25x25cm², 2D anode plane (2x432 strips) Central cathode: mylar, isolated by Teflon AFTER-based electronics Signals extracted by flat cables

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Detector: shielding

Detector set-up at hall A of Canfranc Underground Laboratory

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Detector: readout electronics

Mesh

Preamplifier + amplifier → Spectrum 248 X strips, 248 Y strips, 1 mm pitch → Tracking Sampling rate 50 MHz, 512 samples, window 10.2 µs

Gas system

- For non-flammable gases (simplified installation underground)
- Work open or in closed loop
- Recirculation part + purification branch + gas recovery system (for Ar)

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Detector performance

• Commissioning run on surface at University of Zaragoza

- Characterization of microbulk micromegas
- $Ar+1\%iC_4H_{10}$ and $Ne+2\%iC_4H_{10}$ at 1-10 bar.
- Source: ¹⁰⁹Cd

F. J. Iguaz et al, Eur. Phys. J. C 76 (2016) 529

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Detector performance

• Energy threshold

- Intrinsic amplification in gas → very low threshold possible
- In practice, readout area, sensor capacitance, electronic noise and general complexity set the threshold.

S. Aune et al., JINST 9 (2014) P01001.

-Trigger was limited by the mesh channel noise level \rightarrow trigger from low capacitance strips \rightarrow AGET electronics

TREX-DM aim for sub-keV_{ee} **effective threshold:** 100 eV_{ee} (400 eV_{ee}) nominal (conservative)

- Inputs for main background sources
 - Measured fluxes of environmental backgrounds in Canfranc laboratory (gamma, neutrons, muons)
 - Activity measurements from an extensive material screening program underway for several year to select components
 - mainly based on germanium gamma spectrometry in Canfranc
 - complemented by GDMS, ICPMS, BiPo-3 measurements

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

#	Material,Supplier	Method	Unit	238 U	²²⁶ Ra	²³² Th	²²⁸ Th	^{235}U	40 K	⁶⁰ Co	¹³⁷ Cs	
1	Pb, Mifer	GDMS	mBq/kg	0.33		0.10			1.2			
2	OFE Cu, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.061			
3	ETP Cu, Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020						
4	Kapton-Cu, LabCircuits	Ge	μ Bq/cm ²	<160	<14	<12	<8	$<\!2$	<40	<2	<2	Ex
5	Epoxy Hysol, Henkel	Ge	mBq/kg	<273	<16	<20	<16		<83	<4.2	<4.5	pe
6	SM5D resistor, Finechem	Ge	mBq/pc	$0.4{\pm}0.2$	0.022 ± 0.007	< 0.023	< 0.016	0.012 ± 0.0	050.17 ± 0.07	< 0.005	< 0.005	Ť.
7	Gold connectors, Fujipoly	Ge	mBq/pc	<25	4.45 ± 0.65	1.15 ± 0.35	$0.80 {\pm} 0.19$		7.3 ± 2.6	< 0.1	< 0.4	me
8	Flat cable, Somacis	Ge	mBq/pc	<14	$0.44{\pm}0.12$	< 0.33	< 0.19	< 0.19	1.8 ± 0.7	< 0.09	< 0.10	nt
9	Teflon cable, Druflon	Ge	mBq/kg	<104	<2.2	<3.7	< 1.7	<1.4	21.6 ± 7.4	< 0.7	< 0.8	ΡT
10	Coaxial cable, Axon	Ge	mBq/kg	<650	<24	<15	<9.9	<7.9	163 ± 55	<4.3	<5.1	roj
11	Classical Micromegas, CAST	Ge	μ Bq/cm ²	<40		4.6 ± 1.6		<6.2	<46	<3.1		XEX
12	Microbulk MM, CAST	Ge	μ Bq/cm ²	26 ± 14		<9.3		<14	57±25	<3.1		sal - I
13	Kapton-Cu foil, CERN	Ge	μ Bq/cm ²	<11		<4.6		<3.1	<7.7	<1.6		N N
14	Cu-kapton-Cu foil, CERN	Ge	μ Bq/cm ²	<11		<4.6		<3.1	<7.7	<1.6		1 tt
15	Pyralux, Saclay	Ge	μ Bq/cm ²	<19	< 0.61	< 0.63	< 0.72	< 0.19	4.6 ± 1.9	< 0.10	< 0.14	ıe
#	Material, Supplier	Method	Unit		²¹⁴ Bi	²⁰⁸ Tl						LS
16	Microbulk MM, CAST	BiPo-3	μ Bq/cm ²		< 0.134	< 0.035						õ
17	Cu-kapton-Cu foil, CERN	BiPo-3	μ Bq/cm ²		< 0.141	< 0.012						S
18	Microbulk MM, CERN	BiPo-3	μ Bq/cm ²		< 0.045	< 0.014						Ω
19	Kapton-epoxy foil, CERN	BiPo-3	μ Bq/cm ²		< 0.033	< 0.008						
20	Pyralux foil, Saclay	BiPo-3	μ Bq/cm ²		< 0.032	< 0.013						
		Tabl	e 2: Activitie	es measured f	or the most rele	vant samples a	analyzed in the	ra-				
#	Material,Supplier	Method	Unit	238 U	226 Ra	²³² Th	²²⁸ Th	235 U	40 K	⁶⁰ Co	¹³⁷ Cs	
1	Silver connectors, Fujipoly	Ge	mBq/pc	<55	5.68 ± 0.81	6.1 ± 1.1	6.17 ± 0.72		12.2 ± 3.8	< 0.3	< 0.3	Ve Da Pa
2	Carbon connectors, Fujipoly	Ge	mBq/pc	14.5 ± 6.0	2.77 ± 0.38	1.17 ± 0.23	1.14 ± 0.14		7.5 ± 2.3	< 0.1	< 0.1	rsic fe:
3	Electronic board	Ge	Bq/kg	94 ± 38	41.4 ± 5.6	59 ± 10	53.6 ± 7.4		19.5 ± 6.1	< 0.67	<1.1	30 Nc
4	Chips AGET, CEA	Ge	mBq/pc	<8.7	$0.48 {\pm} 0.07$	0.16 ± 0.06	0.47 ± 0.09		0.83 ± 0.29	< 0.04	< 0.04	1.2 vvei
5	PFA tube, Emtecnik	Ge	mBq/m	<31	< 0.58	< 0.53	< 0.34	< 0.29	<2.6	< 0.16	< 0.18	mb 76
6	PTFE tube, Tecnyfluor	Ge	mBq/m	<19	< 0.48	< 0.54	< 0.41	< 0.26	<2.5	< 0.14	< 0.17	cr
7	Stainless steel mesh	Ge	uBa/cm ²	<53	<1.5	<1.7	< 0.9	< 0.6	<8.7	< 0.3	< 0.5	

Table 3: Activities measured for ²³⁸U and ²³²Th correspond to the upper part of the chains and those of ²²⁶Ra and ²²⁸Th give activities of the lower parts. Reported errors

correspond to 1σ uncertainties and upper limits are evaluated at 95% C.L.

- Simulation of the detector response
- Based on Geant4 (Physics processes) + REST code
 - electron generation in gas
 - difussion effects during drift
 - charge amplification at Micromegas
 - signals at mesh and strips
- Analysis to discriminate point-like events from complex topologies
- Detailed geometry including shielding implemented
- For Ar and Ne mixtures at 10 b
- Successful validation against experimental data

¹⁰⁹Cd source at calibration point

Ar+2%iC₄H₁₀ at 2 bar

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Background rates in 2-7 keV_{ee} in c keV⁻¹ kg⁻¹ d⁻¹ (*)

• From primordial/cosmogenic activity in components inside or close to the vessel

S. Cebrián, TAUP2017, Sudbury, 24th July 2017

Background rates in 2-7 keV_{ee} in counts keV⁻¹ kg⁻¹ d⁻¹ (*)

• From primordial/cosmogenic activity in components outside the vessel and background at the lab

J			
	Component	Argon	Neon
Contribution from muons	Neutrons at LSC	$(2.52 \pm 0.22) \cdot 10^{-2}$	$(7.06 \pm 0.61) \cdot 10^{-2}$
and environmental	Neutrons from ²³⁸ U fission in Pb	(5.82 ± 0.39)·10 ⁻⁵	$(1.094 \pm 0.074) \cdot 10^{-4}$
neutrons under control	Neutrons from ²³⁸ U fission in Cu	<2.1·10 ⁻⁶	<4.1·10 ⁻⁶
	Muons (+ muon-induced neutrons)	0.205 ± 0.021	0.336 ± 0.034
	²¹⁰ Pb in Pb shielding (*)	<0.12	
Radon-induced activity:	Surface ²¹⁰ Pb on Cu vessel	<3.5·10 ⁻³	<6.2·10 ⁻³
<0.32 mBq/cm ² of ²¹⁰ Pb	Surface ²¹⁰ Pb on Cu shielding (*)	<0.025	
from a direct germanium	Cosmogenic ⁶⁰ Co in Cu shielding	0.0250 ± 0.0018	0.0288 ± 0.0020
copper	²²² Rn in air	0.1495 ± 0.0024	0.0841 ± 0.0013
	External gammas from ²³² Th (*)	<9.9	
	External gammas from ²³⁸ U (*)	<18	
	External gammas from ⁴⁰ K (*)	<27	

(*) 90%CL limits when no event in simulation

TREX-DM expected **background**: 1 (nominal) - 10 (conservative) c/keV/kg/d

(*) 5.2-16.3 $\text{keV}_{\text{nr}}\,$ for Ar, 5.5-17.1 $\text{keV}_{\text{nr}}\,$ for Ne

Sensitivity

Prospects for exclusion plots (90% C.L.)

- SI interaction
- Standard halo model
- 10 bar pressure
- Different conditions:

	Α	В	С
Background level (c keV ⁻¹ kg ⁻¹ d ⁻¹)	10	1	0.1
Energy threshold (keV _{ee})	0.4	0.1	0.1
Exposure (kg y)	0.3	0.3	10

Work plan

Detector improvements underway:

- Shielding
- Radiopure components
- Readout planes: microbulk micromegas
- AGET-based DAQ outside shielding

• Estimated timeline:

Commissioning at Canfranc: ~1 year (2017)

Physics Runs: ~2 years

Tentative data-taking programme

- Ne-2% iC4H10 at 1-10 b: 1 year (2018)
- Evaluation of data: threshold, background
- Possible upgrades of setup
- Restart data taking: possibility of depleted Ar at 10 b

Experiment Proposal to the Scientific Committee of LSC

TREX-DM

A low-background low-threshold Micromegas-based Time Projection Chamber for low-mass WIMP searches

Gas TPCs with Micromegas planes have excellent features for rare event searches:

low background levels and thresholds, topological information of events, scaling up possibilities, flexibility in target gas

Still some challenges to be addressed:

performance over large areas, quenching factor

✓ The TREX-DM experiment is a Micromegas-read High Pressure TPC for lowmass WIMP searches (not focused on directionality, unique detector of its kind)

- Detector built and operated at surface (University of Zaragoza) as proof of concept
- Prospects for energy threshold: ~0.4 keV_{ee} down to 0.1 keV_{ee}
- Radiopure version (following an exhaustive material screening campaign) at commissioning phase in Canfranc
- Background model points to levels 1-10 count keV⁻¹ kg⁻¹ day⁻¹
- Good sensitivity prospects to explore regions beyond the current bounds