

15th International Conference on Topics in Astroparticle and Underground Physics, TAUP-2017

Studies of Neutrino Properties and Dark Matter Search with sub-keV Germanium Detectors

Presenter: Lakhwinder Singh (Academia Sinica, Taiwan)

TEXONO Taiwan **EX**periment On NeutrinO (since 1997)

Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (KSNL)

CDEX China Dark Matter Experiment (birth 2009)

Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)

- → Overview :KSNL
- sub-keV Germanium detectors
- → Neutrino programs
 - → Electromagnetic Properties (Theory part by Wu Chih Pan → 24/07 Neutrino session at 13:30)
 - → vN Coherent Scattering
- **→ Dark Matter searches at CJPL** (Prof Hao Ma → 24/07 DM session at 17:00)
- → Summary

Kuo-Sheng Nuclear Power Plant

Total Capacity 2.9 GW each

Reactor neutrino flux spectrum

- Shallow site: ~10 m below ground level
- Concrete overburden ~30 MWE
- Lab: 28 m from core #1,
- $\Phi_{...} = 6.4 \times 10^{12}$ cm⁻² s⁻¹ sr⁻¹

TEXONO Physics Program: interactions by neutrino at reactor

Ge detector & sub-keV challenge

Motivation

- Allow Low Threshold Measurements(~100eV at kg mass scale)
- Neutrino physics at sub-keV: neutrino electro-magnetic properties, vN-coherent scattering
- Low-mass (~10 Gev) WIMP Search.

Challenge

- Near threshold: energy spectrum (noise leakage), pulse: (noise comparable to signal).
- Bulk vs. Surface: algorithms, bulk-efficiency and surface-leakage at low energy.
- Quenching Factors : not well measured
- Energy Calibration: non-linearity of energy definition.
- Trigger Efficiencies near threshold: noise survive hardware threshold.
- Physics vs. Noise: PSD, eff.
- Background understanding: contributions from background and cosmic-induced isotopes at low energy.

sub-keV HPGe detector

HPGe-Generation	Mass (g)	Pulsar FWHM (eV ee)	Threshold (eV ee)
G1	500	130	500
G2	900	100	300
G3	1430	soon	soon

Special feature of PCGe: Bulk/Surface

P-type PCGe-Detectors

n+ dead layer (mm)
Transition region
active volume

- A bless (most background are surface)
- A curse (need to measure efficiency ϵ and leakage 1- λ at low E)

Neutrino interaction with atoms

(Wu chih Pan \rightarrow 24/07 Neutrino session at 13:30

High energy:
$$\nu_e + e^- \rightarrow \nu_e + e^-$$

When transfer energy < binding energy of e⁻,

$$\nu_e + A \rightarrow \nu_e + A^+ + e^-$$

MCRRPA: Multi Configuration Relativistic Random Phase Approximation

- MCRRPA describes well Ge response function up to 80 eV
- Above 80eV Ge-crystal can treated as atom-like
- Below 80eV condense state should considered.
- Above 80 eV, error < 5 %

Neutrino milli-charge

$$\Gamma_{\rm EM} = f_{\rm Q} \gamma_{\mu} + ...$$

 $f_{\rm O}$: neutrino milli-charge

Atomic Ionization Differential Cross-Section with full atomic physics many-body "MCRRPA" calculation enhancement at sub-keV.

Best-fit results on 0.5 kg PCGe threshold = 300 eV

→
$$\delta_Q$$
 < 2.1 x 10⁻¹²e at 90 % C. L.

Free electron:

$$\left(\frac{d\sigma_{\delta_Q}}{dT}\right)_{FEA} = \delta_Q^2 \left[\frac{2\pi\alpha_{em}^2}{m_e}\right] \frac{1}{T^2},$$

- K- and L-shell peaks at the specific binding energies with known intensity ratios → unique "smoking gun" signature (different from cosmic-activation electron-capture background)
- Goal δ_Q ~ 10⁻¹⁴e at 100 eV threshold

Sterile Neutrino Magnetic Moment

In Radiative Decay
$$u_a, \, \nu_s \rightarrow \nu_a + \gamma$$

Under the assumption of sterile neutrino as cold dark matter, following parameters are adopted,

- Dark matter density = 0.4 GeVcm⁻³,
- Maxwellian velocity distribution with
- mean velocity = 220.0 km/s and $V_{esc} = 533 \text{ km/s}$

Non-Relativistic case

 $q^2>0$: forward scattering $v_s + A \rightarrow v_a + A^+ + e^-$, $T>m_s/2$

 q^2 <0: v_a + $A \rightarrow v_a$ + A^+ + e^- , for all TFull 100 $\times d\sigma/dT \text{ (Mb/keV)}$ **EPA** $m_s = 7.1 \text{ keV}$ 0.01 10^{-4} peak at $q^2 \sim 0$, when 0.5 1.0 2.0

T (keV)

vN Coherent Scattering

$$\nu_l + N \rightarrow \nu_l + N$$

A fundamental neutrino interaction never been observed experimentally

$$\left(\frac{d\sigma}{dT}\right)_{sm} = \frac{G_F^2 M_N}{4\pi} \left[Z(1 - 4sin^2 \theta_w) - N \right]^2 \left[1 - \frac{M_N T_N}{2E_\nu^2} \right]$$

- Neutral current process.
- $\sigma \propto N^2$ for $E_v < 50 \text{MeV}$ (Coherent)

Reactor Neutrinos require following conditions to study the vN Coherent Scattering

- > Needs Background < 10 cpkkd, Target 1 cpkkd
- \rightarrow Needs Threshold < 200 eV_{ee}

Important to study for ...

- vA_{el} Scattering is important to study the irreducible background for Dark matter search.
- Important role in Supernova Explosions.
- In study of Beyond Standard Model Physics.
- To study the Quantum Mechanical Coherency effects.
- Reactor monitoring.

vN Coherent Scattering

Improvements (plan):

• <u>Background</u>: cosmic correction, B/S correction, known sources, understanding (simulation).

<u>phys/noise</u>:
 hardware improvement : cooling,
 electronic, PSD, noise-simulation.

Decoherency

The scattering amplitude of individual nucleons adds with a finite relative phase angle to contribute to the cross section. The combined amplitude:

$$\mathcal{A} = \sum_{j=1}^{Z} e^{i\theta_j} \mathcal{X}_j + \sum_{k=1}^{N} e^{i\theta_k} \mathcal{Y}_k,$$

The Average phase mis-alignment angle follows:

$$e^{i(\theta_j - \theta_k)} - e^{-i(\theta_j - \theta_k)} = 2\cos(\theta_j - \theta_k) = 2\cos\langle\phi\rangle$$

Degree of coherency discribed as: $\alpha \equiv \cos \langle \phi \rangle \in [0,1]$

vN Coherent Scattering

The cross-section ratio between nucleus and neutron & partial-coherency and full-coherency:

$$\frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} = Z\epsilon^2 [1 + \alpha(Z-1)] + N[1 + \alpha(N-1)] - 2\alpha\epsilon ZN$$

Phys. Rev. D 93, 113006, 2016.

The limiting conditions:-

Full coherency: $\alpha = 1$; $\sigma_{\nu A_{el}} \propto [\epsilon Z - N]^2$

Completely incoherent: $\alpha = 0$; $\sigma_{\nu A_{el}} \propto [\epsilon^2 Z + N]$

Partial coherency, the relative change in cross section, ξ :

$$\xi \equiv \frac{\sigma_{\nu A_{el}}(\alpha)}{\sigma_{\nu A_{el}}(\alpha = 1)} = \alpha + (1 - \alpha) \left[\frac{(\epsilon^2 Z + N)}{(\epsilon Z - N)^2} \right]$$

CDEX & CJPL-I \rightarrow (Prof Hao Ma \rightarrow 24/07 DM session at 17:00)

CDEX-1 Dark Matter Search

- 335 kg-days of data, Baseline design with NaI(Tl) Fiducial mass: 915 g
- Analysis threshold ~ 475 eV
- Q.F. adopted by TRIM software with 10% systematic uncertainty

[PRD 93 092003 (2016)]

CDEX-1 Dark Matter Search

Solar axion:

M1 transition from 57Fe from Sun:

 ${}^{57}\text{Fe*} \rightarrow {}^{57}\text{Fe+a} \ [g_{AN}]$

axion(a) from sun [g_{Ae}]

Compton(C): $\gamma + e \rightarrow e + a$

Bremsstrahlung(B): $e+Q \rightarrow e+Q+a$

Recombination(R): $e+I \rightarrow I^-+a$

De-excitaion(D): $I^* \rightarrow I + a$

Galatical axion(DM):

Axioelectric or Photoelectric-like

Axioelectric detection:

$$a+e+Z \rightarrow e+Z$$

Summary & Prospects

• sub-keV Ge plans :

- New electro-cooled detector, <200 eV threshold
- Backgrond understanding.
- Detector properties near noise edge, Noise simulation.
- B/S calibration schemes.

Neutrino at KSNL:

- Electromagnetic propteries
 - Establish theoretical tools on Neutrino-Atoms interaction: MCRRPA.
 - Studies on neutrino electromagnetic properties
 - Enhancement and smoking-gun peak signatures for V-milli-charge
 - Cross-section pole structures in non-relativistic v_s +A scattering, relevant for DM
- vN coherent scattering.
 - Goal ~100 eV threshold & background ~ cpkkd.

• Dark Matter Searches at CJPL:

- Ge-Techniques at CJPL
- New axion results from CDEX@CJPL-I
- CJPL-II commissioned soon: a candidate site for future 1-ton Ge 0νββ