Neutrino flavor conversions in binary neutron star mergers : helicity coherence

Amélie Chatelain

Laboratoire AstroParticule et Cosmologie, Paris Diderot "Helicity coherence in binary neutron star mergers and nonlinear feedback" A. Chatelain, C. Volpe, Phys.Rev.D95 (2017)

July 2017

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 1 / 17

Table of contents

Introduction

2 Helicity coherence in binary neutron star mergers

3 Conclusions

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 2 / 17

Introduction

Neutrino flavor conversions in astrophysical environments

Open questions remain, eg

Mass hierarchy

- Absolute mass scale
- Majorana or Dirac nature

Conversions in dense astrophysical environments (SNe, compact binary objects, ...) involve ν self-interaction, more complex phenomena.

Neutrino flavor conversions : formalism

- 2 effective neutrino flavors (ν_e , ν_{χ})
- Density matrix formalism in the mean field approximation

$$\rho(\mathbf{r}) = \begin{pmatrix} |\nu_{e}|^{2} & \nu_{e}\nu_{x}^{*} \\ \nu_{e}^{*}\nu_{x} & |\nu_{x}|^{2} \end{pmatrix} = \begin{pmatrix} \mathcal{P}_{\nu_{e}\to\nu_{e}}(\mathbf{r}) & \times \\ \times & \mathcal{P}_{\nu_{e}\to\nu_{x}}(\mathbf{r}) \end{pmatrix} \to \begin{bmatrix} i\dot{\rho} = [H,\rho] \\ i\dot{\bar{\rho}} = [\bar{H},\bar{\rho}] \\ i\dot{\bar{\rho}} = [\bar{H},\bar{\rho}] \end{bmatrix}$$

Binary Neutron Star mergers : the astrophysical context

[Perego et al., Mon.Not.Roy.Astron.Soc. 443. 2014]

- Still little studied.
- Neutrino driven winds : candidates for r-process nucleosynthesis.
- Gravitational waves detection could bring more information.

$$\left. \begin{array}{c} \nu_e + n
ightarrow p + e^- \\ ar{
u}_e + p
ightarrow n + e^+ \end{array}
ight\}$$
 Set $Y_e = rac{p}{n+p}$.

 \rightarrow What about neutrino flavor conversions ?

Amélie Chatelain (APC)

Flavor conversions in BNS : Matter Neutrino Resonance

• $L_{\bar{\nu}_e} > L_{\nu_e}$: possible MSW-like cancellation between matter term and ν self interaction term \rightarrow Matter Neutrino Resonance.

Could relaxing some hypothesis change these behaviors ? Figure: [Malkus, McLaughlin, Surman, PRD93, 2015]

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 6 / 17

Table of contents

= 990

7 / 17

July 2017

Introduction

2 Helicity coherence in binary neutron star mergers

3 Conclusions

Amélie Chatelain (APC)

Beyond the mean field approximation : helicity coherence

$$i\dot{
ho} = [H,
ho]$$
 $i\dot{ar{
ho}} = [ar{H}, ar{
ho}]$

- Most general equations in the mean field approximation : first order corrections to the relativistic limit ∝ m → Helicity Coherence, coupling ν_L ↔ ν_R (Dirac) or ν ↔ ν̄ (Majorana). [Volpe, Vaananen, Espinoza, PRD87, 2013] [Vlasenko, Cirigliano, Fuller, PRD89, 2014] [Serreau, Volpe, PRD90, 2014]
- First study of this term [Vlasenko, Fuller, Cirigliano, 1406.6724] : toy model with one Majorana ν flavor \rightarrow significant conversions $\nu \leftrightarrow \bar{\nu}$, sustained by nonlinear feedback.

 \rightarrow Can these corrections produce some effects in a more realistic scenario ?

Amélie Chatelain (APC)

Extended mean field evolution equations [Serreau, Volpe, PRD90, 2014]

• Consider Majorana neutrinos, 2 flavors.

$$\begin{array}{c} i\dot{\rho} = [H,\rho] \\ i\dot{\bar{\rho}} = [\bar{H},\bar{\rho}] \end{array} \right\} i\dot{\rho}_{\mathcal{G}} = [h_{\mathcal{G}},\rho_{\mathcal{G}}]$$

• Generalized matrices $2 \times 2 \rightarrow 4 \times 4$.

$$\rho \longrightarrow \rho_{\mathcal{G}} = \begin{bmatrix} \rho & \zeta \\ \hline \zeta^{\dagger} & \bar{\rho}^{T} \end{bmatrix}$$

$$H \longrightarrow h_{\mathcal{G}} = \begin{bmatrix} H & \Phi \\ \hline \Phi^{\dagger} & -\bar{H}^{T} \end{bmatrix}$$

- ρ ($\bar{\rho}$) : density matrices for ν ($\bar{\nu}$);
- ζ : coupling ν - $\overline{\nu}$ sectors.
- $H(\bar{H})$: Hamiltonian for $\nu(\bar{\nu})$;
- Φ : helicity coherence coupling $\nu \bar{\nu}$ sectors, $\propto \frac{m}{E} \approx 10^{-7} - 10^{-8}$.

Neutrino Conversion in BNS mergers

July 2017 9 / 17

Our model : Binary Neutron Star mergers

[Chatelain, Volpe, PRD95, 2017]

Flavor conversions in BNS without helicity coherence : Matter Neutrino Resonance

 10^{-6}

10

MSW effect : equality of two diagonal elements $H_{11} - H_{22} \approx 0$.

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$$

Nonlinear feedback : adiabaticity enhanced because of non-linearity from neutrino self-interactions.

¹Matter Neutrino Resonance

Amélie Chatelain (APC)

 $\overset{\circ}{\overset{\circ}{H}} \overset{\circ}{\overset{\circ}{H}} \overset{0.0}{H}$

0.2 0.0L

Helicity Coherence : numerical results

• $\frac{m}{E} \approx 10^{-8} \rightarrow \text{Look for MSW-like resonance conditions that could enhance } \nu_e \leftrightarrow \bar{\nu}_e$ conversions.

- We find no nonlinear feedback : extremely narrow resonance.
- Artificially taking m = 100 eV : no difference.

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 12 / 17

Helicity Coherence : numerical results

 \hookrightarrow Run around the resonance : no conversions, contrary to what was found in first study of this term with toy model in one flavor [Vlasenko, Fuller, Cirigliano, 2014] with m = 1 eV.

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 13 / 17

Why does nonlinear feedback occur ?

How we analyzed it :

- Nonlinear feedback ↔ matching between matter and neutrino self-interaction derivatives.
- First order perturbation analysis of the resonance conditions.

Matter Neutrino Resonance

- Yo-yo effect between geometry and flavor conversions.
- Multiple MSW-like resonances.

Helicity Coherence

- No yo-yo effect.
- Matching possible only for very peculiar matter profiles.

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 14 / 17

Multiple MSW-like resonances conditions

= 900

15 / 17

July 2017

- Explains how the nonlinear feedback mechanism, that enhances adiabaticity, can be set up.
- One flavor toy model [Vlasenko, Fuller, Cirigliano, 2014] : matter profile artificially smooth to enable the matching and the nonlinear feedback.

No effects in binary neutron star mergers or in SNe. True for Dirac neutrinos.

Amélie Chatelain (APC)

Table of contents

1 Introduction

2 Helicity coherence in binary neutron star mergers

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 16 / 17

-

Conclusions and perspectives

- **Helicity coherence** : no effects appear due to non-relativistic corrections in a detailed astrophysical environment.
 - Answered debated question about corrections beyond usual description in the mean-field approximation.
 - Deeper insight on nonlinear feedback mechanism and matter neutrino resonance.
- Neutrino flavor conversions in BNS mergers: lots of on-going investigations (eg, nonstandard interactions [Chatelain, Volpe, arXiv:2017:xxxx], ...)

5 1 N Q Q

Conclusions and perspectives

5 1 N Q Q

17 / 17

July 2017

- **Helicity coherence** : no effects appear due to non-relativistic corrections in a detailed astrophysical environment.
 - Answered debated question about corrections beyond usual description in the mean-field approximation.
 - Deeper insight on nonlinear feedback mechanism and matter neutrino resonance.
- Neutrino flavor conversions in BNS mergers: lots of on-going investigations (eg, nonstandard interactions [Chatelain, Volpe, arXiv:2017:xxxx], ...)

Thank you !

Amélie Chatelain (APC)

Backup slides

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

1 July 2017

- 4 周 ト - 4 国 ト - 4 国

Neutrinospheres

Scattering surfaces for 4.62, 10.63, 16.22, 24.65, 56.96 MeV.

Uncertainties

Amélie Chatelain (APC)

Neutrino Conversion in BNS mergers

July 2017 3 / 3

= nac