GRAVITY AND ANTIMATTER: THE AEGIS EXPERIMENT AT CERN

DAVIDE PAGANO

UNIVERSITÀ DEGLI STUDI DI BRESCIA & INFN PAVIA on behalf of the AE \overline{g} IS collaboration

THE WEAK EQUIVALENCE PRINCIPLE

Universality of free fall (UFF) established by Galileo and Newton

$$m_i = m_g$$

Weak equivalence principle (WEP)

alactric field:

Unique behavior:

electric field.	gravitational neid.
$\mathbf{F} = q \cdot \mathbf{E}$	$\mathbf{F} = m \cdot \mathbf{G}$
$ \mathbf{E} \propto \frac{Q}{r^2}$	$ \mathbf{G} \propto \frac{M}{r^2}$
$ \mathbf{a} \propto q$	$ \mathbf{a} = const$

• Einstein Equivalence Principle:

- WEP
- Local Lorentz Invariance (LLI)
- Local Position Invariance (LPI)

gravitational field:

- EEP is the "heart and soul" of General Relativity (GR):
 - EEP valid → gravity is governed by a "metric theory of gravity"

R. Dicke, Les Houches Summer School of Theoretical Physics: Relativity, Groups and Topology, pp. 165–313, CNUM: C63-07-01 (1964)

C. Will, Living Rev. Relativity 17 (2014)

- EEP extensively tested experimentally:
 - Isotropy of atomic energy levels: $\delta = |c^{-2} 1| > 10^{-23}$

<u>a</u>

Gravitational red shift:

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{\Delta U}{c^2} > 10^{-6}$$

Д Ш Ж Torsion balance:

$$\eta = \frac{a_1 - a_2}{(a_1 + a_2)/2} > 10^{-13}$$

WEP FOR ANTIMATTER: THE CURRENT PICTURE

- Some arguments would suggest the WEP holds for antimatter
- Strong theoretical arguments only apply to the idea of antigravity
 - Morrison (1958), Schiff (1958), Good (1961), etc...
 - none of them necessarily requires $m_i^{antimatter} = m_g^{matter}$
- On the experimental side:
 - neutrinos detected from Supernova 1987A

S. Pakvasa *et al.*, **Phys. Rev. Lett. D.** 39, 6 (1989)

Shapiro delay of relativistic particles not a test for the EEP

G. T. Gillies, Class. Quantum Grav. 29 (2012)

- p- \overline{p} cyclotron frequency comparisons: $\frac{\omega_c \bar{\omega_c}}{\omega_c} < 9 \times 10^{-11}$ G. Gabrielse et al., PRL 82 (3198) (1999)
 - Model dependent, CPT assumption, absolute potentials, ...
- and others...but none of them is conclusive

WEP FOR ANTIMATTER: WHY TO TEST IT?

• Our attempts for a quantum theory of gravity typically result into new interactions which violate the WEP (ex. **KK theory**)

Int. J. Mod. Phys. D18, 251-273 (2009)

- Some open questions (like *dark matter* and *baryogenesis*) could benefit from a direct measurement

 **Astrophys. Space Sci. 334, 219–223 (2011)

 JHEP 1502, 076 (2015)
- Because it's possible and no direct measurements are available
 - Previous attempts:
 - 1967: Fairbank and Witteborn tried to use positrons

Phys. Rev. Lett. 19, 1049 (1967)

1989: PS-200 experiment at CERN tried to use (4 K) p̄

Nucl. Instr. and Meth. B, 485 (1989)

Nature Communications 4, 1785 (2013)

- Problem with charged particles: stray E and B fields
- 2013: ALPHA experiment at CERN set limit on m_g/m_i for $\overline{\rm H}$
 - m_q/m_i > 110 excluded at 95% CL

AEGIS COLLABORATION

19 institutes and ~80 people

University of Bergen

University of Brescia

CERN, Geneva

University of Genova

Heidelberg University

Max Planck Institute for Nuclear Physics, Heidelberg

University College London

University of Lyon 1

University of Milano

Politecnico di Milano

Institute of Nuclear Research of the Russian Academy of Science, Moscow

University of Oslo

University Paris-Saclay and CNRS

University of Pavia

Czech Technical University, Prague

University of Trento

ETH Zurich

INFN Sections of Genova, Milano, Padova, Pavia, Trento

GRAVITY MEASUREMENT WITH AEGIS EXPERIMENT

 The main goal of AEgIS is a direct measurement of the Earth's local gravitational acceleration g on "cold" beam of H atoms using a moiré deflectometer

 For H
 at very low temperature a precision of the order of few percent can be reached

AEGIS APPARATUS

(Over)Simplification of the experimental setup

ANTIHYDROGEN PRODUCTION STRATEGY

• Cold Rydberg H* atoms can be produced via charge exchange

$$Ps^* + \bar{p} \to \bar{H}^* + e^-$$

Temperature of H
 given by the temperature of F

- Rydberg H
 : strong dipole moment → Stark acceleration
- p̄ are provided from the **Antiproton Decelerator (AD)** at CERN and are cooled down (electron cooling) in electromagnetic traps

POSITRONIUM FORMATION AND EXCITATION

• The second ingredient for our H recipe is the Rydberg positronium which is an exotic atom composed by an e- and a e+

• para-Ps(125 ps) and ortho-Ps(142 ns)

 Ps produced via electron capture of e+ within a nanoporous silica target

transfer line

bunches of $\sim 10^7$ e⁺ transfer $\epsilon > 0.8$

POSITRONIUM FORMATION AND EXCITATION

- Two-step excitation of Ps:
 - UV $n = 1 \longrightarrow 3$
 - IR $n = 3 \longrightarrow Rydberg$

DETECTOR TESTS

- Two candidates detectors are currently under investigation:
 nuclear emulsions¹ and Timepix² (from Medipix collaboration)
 - ¹⁾ S. Aghion *et al.*, JINST 12 (2017) P04021

- ²⁾ N. Pacifico *et al.*, NIM A 831 (2016) 12–17
- Nuclear emulsions provide excellent position resolution (~2 µm) but require a very long time to be processed
- Timepix is a silicon detector composed a matrix of 256 by 256 pixels which allows a spatial resolution of ~25 µm

RESULTS: (MINI) MOIRÉ TEST WITH ANTIPROTONS

- AEgIS experiment is taking data (H
 production expected in 2017)
- Small-scale test of the Moiré deflectometer with p
 was performed

RESULTS: (MINI) MOIRÉ TEST WITH ANTIPROTONS

146 antiprotons recorded

$$\Delta y = 9.8 \pm 0.9(stat) \pm 6.4(syst) \mu m$$

- $F = 530 \pm 50 \text{ aN (stat.)} \pm 350 \text{ aN (syst.)}$
- consistent with a B ~ 7.4 G

B ~ 10 G measured at the Moiré position

Future plans

CONCLUSIONS AND FUTURE PLANS

- AEgIS aims at probing the WEP on antimatter
 - No direct measurement so far

- AEgIS is taking data
- The working principle tested using antiprotons
 - Stray B field → no gravity measurement possible on p̄
- H production expected to be achieved later this year
- First gravity measurements planned for the next years
- Longer term plans also include H-H spectroscopy