

New Dark Matter Search Strategies at DUNE

Jason Kumar University of Hawaii

o a bora

Seongjin In Carsten Rott

- David Yaylali •

• JCAP **01**, 016 (2017), 1609.04876

dark matter and monoenergetic neutrinos

- can search for dark matter using neutrino detectors
 - dark matter scatters off solar nuclei and collects in the core of the Sun
 - annihilates to Standard Model products
 - neutrinos get out and reach detector on earth
- focus is typically on a smooth distribution of high-energy events above background
- I'll focus on a different possibility
 - models in which dark matter can produce monoenergetic sub-GeV neutrinos
 - detectors and strategies which can resolve a line signal
 - obtaining direction information about neutrino
- **DUNE** is an ideal setting for this type of search

standard lore

- expect to get a continuum signal
 - dark matter annihilates to intermediate particles
 - decays give a continuum neutrino spectrum
- look for high energy neutrinos
 - larger cross section with detector
 - smaller background from atmospheric neutrinos
- use directionality, but only for high energy neutrinos
 - try to identify neutrinos arriving from the direction of the Sun
 - looking for charged lepton produced by charged-current interaction
 - points away from source, but only for E > GeV
 - for lower energies, charged lepton is roughly isotropic

basic points

- theory
 - u, d, s final state quarks produce plenty of K⁺
 - light hadrons stop before they decay (producing more K⁺)
 - decay produces 236 MeV monoenergetic neutrino
- experiment
 - DUNE will do very well at total energy reconstruction for a charged-current interaction
 - sensitive to a line signal
 - DUNE can also get the direction of the neutrino from the nucleon recoil
 - new type of directionality search
 - great for reducing systematic uncertainty

neutrinos from the Sun

(see Carsten Rott's talk....)

- basic idea
 - DM scatters off solar nuclei, loses energy through elastic scattering
 - − falls below v_{esc} → captured
 - orbits, eventually collects in core
 - rate depends on mass, σ
 - DM annihilates to SM matter
 - SM decay yields neutrinos → seen at detector
 - DM in equilibrium $\rightarrow \Gamma_{c} = 2 \Gamma_{A}$
 - so neutrino event rate probes DM capture rate ($\propto \sigma_{SI}, \sigma_{SD}$)
- usually ignore light q final state
 - why?

Dawn Williams

dark matter annihilation to light quarks

- u, d, s final states \rightarrow hard!
 - u, d, s → light hadrons which stop in the Sun before decay
 - resulting v spectrum is very soft
 - large background, small detector effective area
- but the stopping process produces a large number of π^+ , K⁺
 - trade a hard spectrum for a softer one, but with larger flux
 [Beacom, Rott, Siegal-Gaskins (1208.0827); Bernal, Martin-Albo, Palomares-Ruiz (1208.0834)]

spectrum

- care about $\pi^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$
 - $\pi^0 \not \to \gamma \gamma$
 - π^{-} Coulomb-captured by nuclei, and absorbed (not a lot of neutrinos)
- main relevant decay is π^+ , $K^+ \rightarrow \nu_{\mu} \mu^+$
 - monoenergetic v with E = 29.8 MeV (π^+ 100%) or 235.5 MeV (K⁺ 64%)
 - line signal
 - include oscillation effects
- just need the fraction of DM energy which goes into stopped π^+ , K⁺
 - determine with Pythia/GEANT
 - use Pythia to simulate showering and hadronization; output the spectrum of long-lived hadrons
 - GEANT deals with interaction in dense solar medium

- I'll focus on the 236 MeV neutrino arising from stopped K⁺ decay
- much larger cross section with detector target
 - more than offsets smaller number of kaons per annihilation
- now have all the pieces
 - given dark matter mass, scattering cross section, and annihilation channel, can get the flux of 236 MeV neutrinos from the Sun
 - with the energy resolution, can get the flux from atmospheric neutrino background
 - gives us the signal-to-background ratio
 - with the neutrino-nucleus scattering cross section (numerical) and exposure, can get signal significance

DUNE

 Deep Underground Neutrino Experiment

- perfect for this type of search
 - large exposure
 - good total energy resolution
 - can identify outgoing particle tracks with good energy and angular resolution
- our benchmarks
 - angular resolution $\sim 5^{\circ}$
 - total energy res. $\epsilon \sim 10\%$

a theorist, for scale

1601.02984

sensitivity for non-directional search

- assume 34 kT yr exposure
 - electron channel
 - ~ 50 bgd. events
 - 90%CL exclusion, assuming observation consistent with bgd.
 - sig. signif. \propto (exposure / ϵ)^{1/2}
- competitive with direct detection at ~ 4-5 GeV (but PICO-60 wins above this)
- SK, HK \rightarrow win with exposure
 - WC detectors \rightarrow size advantage
- other neutrino searches not sensitive (focused on high-energy neutrinos)

directionality

- for 34 kT yr exposure, DUNE atm. v background is significant
- would be great to get a directionality cut
 - preferentially select events where v arrives from the direction of the Sun
- reduces systematic uncertainties in background by comparing on-axis to off-axis event rates
 - want S / B > $\delta B_{sys.}$ / B \rightarrow excess not just a systematic error
 - can measure B by going off axis (reduces $\delta B_{sys.}$ / B)
 - increases S / B by picking events from the direction of the Sun
- can improve statistical significance
- most searches for neutrinos arising from dark matter annihilation utilize directionality...
- ... but usually when looking for a very energetic neutrino
 - CC-interaction produces a forward-peaked charged lepton

directionality for sub-GeV vs

- for sub-GeV v, the charged lepton produced is mostly isotropic
- but the hadronic recoil is not!
- at this energy, get a lot of events where a single proton is ejected
 - $v_{\ell} + {}^{40}\text{Ar} \rightarrow \ell + p^+ + {}^{39}\text{Ar}$
- ejected in the forward direction
 - cut on proton direction
- but analytic approximations to the cross sections and distributions are lacking
- rely on numerical techniques
- NuWro

NuWro

- generate 10⁵ events per flavor ($v_e \text{ or } v_\mu$)
- select events with...
 - one charged lepton track identified
 - one ejected proton track identified (kills v bgd.)
 - cuts at event generation level (no attempt to model detector)
 - just need particles generated above a threshold
- lepton threshold \rightarrow 30 MeV
- proton threshold \rightarrow 50 MeV (according to DUNE CDR...)
 - "tight"
- we'll also consider a more optimistic proton cut \rightarrow 20 MeV
 - "loose"
- determine efficiency for signal events (η_s) and bgd events (η_B) to satisfy event selection and angular cuts

sensitivity and systematics

- two efficiencies
 - event selection (η_{sel})
 - common to S and B
 - directional (η_{dir})
 - fraction of events in forward cone from the Sun
 - better for S than for B
- total efficiency $\eta_{S,B} = \eta_{sel} \times \eta_{dir(S,B)}$
- care about improvement to signal significance, and to S-to-B ratio
- we'll choose cuts to maximize improvement for signal significance for fixed exposure
 - other choices possible...

cut	proton threshold	selection efficiency (ŋ _{sel})		
tight:electron	E _{kin} > 50 MeV	0.43		
tight:muon	E _{kin} > 50 MeV	0.28		
loose:electron	E _{kin} > 20 MeV	0.83		
loose:muon	E _{kin} > 20 MeV	0.75		

cuts and efficiencies

cut	S/B enhancement	sensitivity enhancement		
tight:electron	4.8	1.2		
tight: muon	4.5	1.0		
loose:electron	3.4	1.4		
loose:muon	3.5	1.4		

tight \rightarrow win on S/B (up to S/B ~0.4) loose \rightarrow win on sensitivity

- cuts: cone half-angle (\gg ang. res)
- tight: muon \rightarrow 45°
- tight: electron \rightarrow 50°
- loose: electron \rightarrow 55°
- loose: muon \rightarrow 55°
- S/B can improve by up to × 5
 very good for on-/off-axis
- but signal significance only sees a modest improvement
 - big hit from small selection efficiencies
- win more on systematics than statistics

results

90%CL, q=u,d

assume 340 kT yr ... need large exposure to offset selection efficiencies dozens of background events need a long run-time just to catch up to Super-K and PICO-60

what's the point of doing this at DUNE?

- for signal significance, WC detectors will always win because of exposure
- except for a small mass range, PICO is already winning
- but there are good reasons to search at DUNE
- directionality gives a new handle on systematic uncertainties and bgd.
 - no such directionality possible with WC detectors
 - PICO sensitivity is degrading rapidly < 10 GeV
 - different astrophysics uncertainties than direct detection
- if a signal is seen in the future, can get a handle on annihilation channel
 - is it asymmetric dark matter?
 - a 236 MeV line signal at DUNE from the Sun would be striking evidence of dark matter annihilation producing light quarks
 - cross section could be \ll 1 pb, with Sun still in equilibrium
 - especially for low mass DM, hard to see this any other way
- important as a complementary search strategy

resolving uncertainties

- a lot of uncertainty in the neutrino-nucleus scattering cross section, etc.
 - really a proof-of-principle
- can "calibrate" by comparing rates on-axis vs. background off-axis
- but can also calibrate directly with a stopped kaon experiment
- a stopped pion experiment is also a stopped kaon experiment
- stopped pion proposals like $DAE\delta ALUS$ are under consideration for DUNE
- can also put an LArTPC at a stopped pion experiment

conclusion

- dark matter annihilation in the Sun can produce monoenergetic 236 MeV neutrinos
 - produce numerous stopped K⁺
- LArTPC v-detectors can reconstruct energy and direction of products
 - can detect a neutrino line with good total energy resolution
 - can get directionality from ejected proton

- reduced backgrounds and systematic uncertainties
 sub-GeV v directionality is a unique capability of DUNE
- stopped kaon experiment would help with calibration
- above all, need lots of exposure

Back-up slides

why (not) $\chi \chi \rightarrow \overline{f}f$ (f=u,d,s)?

- can understand just from angular momentum
- for Majorana fermion, wavefunction is anti-symmetric
 - L=0, S=0 or L=1, S=1
- if outgoing fermions on z-axis
 - − $L_z=0$ (Y_{Im}(θ=0,φ)≠0 only if m=0)
 - $-S_z = J_z$
- if S_z=0 need f, f with same helicity
 - not CP-conjugate
 - need Weyl spinor mixing
 - in MFV, mixing scales with mass
- if $S_z = \pm 1$ need f, f with opp. helicity
 - no mixing needed

monoenergetic neutrinos

- this argument underlies the theoretical prejudice towards searches for the $\overline{b} \ b, \overline{\tau} \tau$ and W⁺ W⁻ channels
- but the chirality suppression arises from the assumption of Majorana fermion dark matter and minimal flavor violation
 - certainly true for the CMSSM, but need not be true in general
 - WIMPs need not be Majorana, and MFV can fail even in the general MSSM
- if dark matter is a Dirac fermion, then the initial state can be L=0, S=1, J=1, so s-wave annihilation, but no mixing needed
- if we drop minimal flavor violation, then mixing need not scale with quark mass
- either way, $\chi\chi \rightarrow \bar{q}q$ (q = u, d, s) branching fraction could be $\mathcal{O}(1)$
- worth studying these annihilation channels

signal limited – K⁺

- compare to π^+ channel
- larger cross section
 - larger effective area (> ×100)
 - need smaller exposure to get signal (or bgd.) events
- fewer K⁺ per annihilation
 - backgrounds similar
 - smaller flux, larger bin
 - factor 5-10 smaller S/B
- upshot
 - better sensitivity with small exposure
 - leaves linear regime first
 - ultimate sensitivity comparable

$$N_{bgd.,236 \text{ MeV}}^{DUNE} \approx (486) \epsilon \left(\frac{M_{Ar}}{34 \text{ kT}}\right) \left(\frac{T}{\text{yr}}\right)$$

$$\frac{S}{B} \approx \frac{0.83}{\epsilon} \frac{\sigma_{SD}^{p}}{pb}$$
$$\equiv_{opt}^{Ar} \approx \frac{0.07}{\epsilon}$$

issues with the cross section at $\mathcal{O}(100)$ MeV (a novice's view)

- basic idea \rightarrow impulse approximation (IA)
 - neutrino interacts with a single struck nucleon
 - subsequent interactions between struck nucleon and rest of nucleus
- can model the nucleus state as...
 - Fermi gas
 - using a more detailed spectral function obtained from theory and electron scattering experiments
- spectral function is a better model...
- ...but analysis still based on IA
- IA becomes less valid an approximation for $E_v < 100 \text{ MeV}$
 - Ankowski, Soczyk -- 0709.2139
 - no good tool for going beyond IA, though
 - best to just calibrate

r-factors

r decreases with m_x about $\times 10$ more 30 MeV vs than 236 MeV vs per annihilation for u and d channels

the pieces we need....

- we have the neutrino fluxes from the Sun arising from DM....
- we have estimates of the $v_{e,\mu}$ background at E ~ 236 MeV (atm. v)
- charged current neutrino-nucleus scattering cross section (v_ℓ + n → ℓ + p)
 - for E \sim 236 MeV, theory complicated
 - dominant contribution is quasielastic
 - not very well understood
 - rely on numerical packages
 - NuWro

Battistoni, Ferrari, Montaruli, Sala

$$\frac{d^{2}\Phi_{B}^{e}}{d\Omega dE} \approx 1.2 \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{MeV}^{-1}$$
$$\frac{d^{2}\Phi_{B}^{\mu}}{d\Omega dE} \approx 2.3 \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{MeV}^{-1}$$

(⊽ similar)

$$\sigma_{cc}^{e} (236 \text{ MeV}) \approx 4.2 \times 10^{-38} \text{ cm}^{2}$$

 $\sigma_{cc}^{\mu} (236 \text{ MeV}) \approx 2.7 \times 10^{-38} \text{ cm}^{2}$

NuWro

90% CL numbers

non-directional search, electron channel

experiment	status	exposure	N_B^{π}	$N_{\rm obs}^{\pi}$	f_S^{π}	N_S^{π}	N_B^K	$N_{\rm obs}^K$	f_S^K	N_S^K
KamLAND	current	4 kT yr					5.1	6	0.68	5.5
DUNE	future	$34 \mathrm{kT} \mathrm{yr}$	0.2	0	1	2.3	50	50	0.68	10.3
Super-K	$\operatorname{current}$	240 kT yr				—	305	305	0.68	28.7
Hyper-K	future	$600 \ \mathrm{kT} \ \mathrm{yr}$					762.5	763	0.68	45.4

directional search, 340 kT yr exposure

cuts	expected N_B	assumed N_{obs}	expected N_S for exclusion
tight: electron	14.8	15	6.5
tight: muon	14.9	15	6.4
loose: electron	41.6	42	10.0
loose: muon	47.5	48	10.7