

Status and perspectives of COBRA

K. Zuber for the COBRA-Collaboration

The COBRA experiment

Idea: use room-temperature CdZnTe (CZT) semiconductor detectors
K. Zuber, Phys. Lett. B 519,1 (2001)

- Search for DBD of Cd-116 (Q-value = 2814 keV)
- Allows for searches of Te-130, Te-128, Zn-70, Cd-114 (two electrons)
- Allows for searches of Zn-64, Cd-106, Cd-108, Te-120 (positron/EC)
- Precision measurement of 4-fold forbidden Cd-113 beta decay
- Solar / Supernova (on very large scale...)

Benefits:

- Peak above 2.614 MeV line
- No cryogenics
- No magnets
- Strongly modular and scaleable
- Very compact
- Pulse shape analysis
- Internal veto
- Multidetector veto

→

- Status of COBRA at LNGS (Running 64 CZT detectors of 1 cm³)
- Towards COBRA upscale

November'13:

• Finalization of the COBRA-demonstrator setup (64 x 1cm³ detectors)

January'14:

Since Jan'14 smooth and stable data taking

COBRA demonstrator @ LNGS

J. Ebert et al., arXiv:1507.08177

• 218.8 kg*days of fully calibrated and evaluated data acquired as of Feb'15

Pulse Shape Analysis (PSA)

- PSA allows for the identification of different types of events
- Development of powerful methods to remove background contributions

M. Fritts et al, NIM A 708,1 (2013), M. Fritts et al, NIM A 749,27 (2014)

Identifying the features

Intrinsic ¹¹³Cd background, 4-fold forbidden β-decay, half-life: 7.9x10¹⁵ y

Used as intrinsic stability monitor...J. Ebert arXiv:1508:03217

Application of cuts

- Background reduction by one order of magnitude in the ROI (¹¹⁶Cd) due to PSA
- Background index ~ 0.5 cnt/keV/kg/y

COBRA-Demonstrator Results

- Successful long term operation since Nov'11
- Acquisition of 218.8 kg x days calibrated exposure
- Main background limitation: Surface alphas!

isotope	COBRA'09	COBRA'13	COBRA'15
¹¹⁴ Cd	2.0x10 ²⁰	1.06x10 ²¹	2.27x10 ²¹
¹²⁸ Te	1.7x10 ²⁰	1.44x10 ²¹	2.39x10 ²¹
⁷⁰ Zn	2.2x10 ¹⁷	2.57x10 ¹⁸	6.12x10 ¹⁸
¹³⁰ Te	5.9x10 ²⁰	3.88x10 ²¹	8.85x10 ²¹
¹¹⁶ Cd	9.4x10 ¹⁹	9.19x10 ²⁰	1.52x10 ²¹

World best

Preliminary results!!

COBRA-Demonstrator Results

- Cd-113 is one of only 3 know 4-fold forbidden beta decays
- Spectral shape is sensitive to quenched g_A

$$T_{1/2}^{-1} = PS \times g_A^4 \times ME^2$$

J. Suhonen, O. Civitarese, PLB 725,153 (2013)

Towards a Large-Scale Experiment: Detectors

Move to larger detectors mandatory:

- Reduction of surface/ volume ratio
- Increased detection efficiency for 0v2β
- Reduction of total number of detectors/ channels per cm³ CZT

- Crystal size is commercially available
- <u>Lab-investigations on 6cm³ detectors have</u> <u>already started</u>
- Successfull reconstruction of energy and depth-of-interaction
- Intense investigations ongoing to transfer methods and algorithms from 1 to 6cm³ detectors

Towards a Large-Scale Experiment: QUAD Detector system

- QUAD system: 4 independent detectors on one crystal
- Internal veto possible

Towards a Large-Scale Experiment: Detector Layers

4x4 1cm³ detector layer of the COBRAdemonstrator setup (m_{czt}=96g)

3x3 6cm³ Quad-detector layer (Detector Module for Large-Scale COBRA), m_{czt}=324g

- <u>Granted DFG-project:</u> Assembly and low-background operation of a 3x3 Quad-detector module at the LNGS
- Preparations ongoing, detectors ordered, installation planned for 2016/17
- well approved technique to mount and operate CZT-detectors

Towards a Large-Scale Experiment: DAQ-electronics

Discrete electronics

Highly integrated electronics

- 128 channel ASIC-FPGA based DAQsystem (switched capacitor array)
- Table top setup
- Cooperation with IDEAS
- Development-system in lab available
- Adaptation ongoing
- 128 channel DAQ-Rack of the COBRA-Demonstrator at LNGS
- Fully loaded 19" rack

Large-Scale COBRA design

Combination of all new developments to assemble a detector module

6 cm³ Quad detector

Modular design

Integrated electronics

Large-Scale COBRA design

Modules → Detector Module Carrier (DMC) → layers → towers

Strongly modular: 8 modules form one DMC, 8 ladders one layer

How to build a large scale experiment?

- Basic unit: 3x3 Detector Module
 (DM): 9 x 36g = 0.324kg / DM
- 8 Modules assembled on a Detector Module Carrier (DMC): 8 x 0.324 kg
 = 2.6 kg / DMC
- 8 DMC to form one Detector Layer (DL): 8 x 2.6 kg = 20,8 kg / DL
- 20 DL setup:20 x 20,8 kg = 415 kg total detector mass (11.520 detectors)
- Height of a detector layer:
 ~ 5 cm → total height ~ 1m

Could fit in the ladder lab

Shielding

- Massive Monte Carlo campaign
- Best shielding: 10 cm Cu 20 cm Pb 10 cm PEB5

Scientific goals for the largescale COBRA setup

A. Dueck, W. Rodejohann, K. Zuber, arXiv:1103.4152, Phys. Rev. D 83,113010 (2011)

• to reach a sensitivity of 50 meV/c² with ¹¹⁶Cd, the detectable half-life must be longer than:

 $T_{1/2} > 2 \cdot 10^{26} y$ (depending on NME)

Other physics I

Solar neutrinos

Threshold: 464 keV

Signal:

Coincidence in a single detector

⁷Be contribution g.s. alone: 227 SNU

¹¹⁶Sn

K. Zuber, Phys. Lett. B 571,148 (2003)

Other physics II

Supernova signals

 $\nu_l + {}^{116}\text{Cd} \rightarrow {}^{116}\text{Cd}^* + \nu'_l,$

NC interactions: $\bar{\nu}_l + {}^{116}\text{Cd} \rightarrow {}^{116}\text{Cd}^* + \bar{\nu}'_l$

CC interactions: $\nu_l + {}^{116}\mathrm{Cd} \rightarrow {}^{116}\mathrm{In} + l^-,$

 $\bar{\nu}_l + {}^{116}\text{Cd} \rightarrow {}^{116}\text{Ag} + l^+$

W. Almosly, E. Ydrefors, J. Suhonen, JPG 40,095201 (2013)

W. Almosly, E. Ydresfors, J. Suhonen, JPG 42,095106 (2015)

Towards a large experiment (2nu DBD background)

- Assuming 2 x 10²⁶ yrs half-life for 0nu DBD
- Shown are 2% FWHM, aim is 1.3% FWHM
- All functioning detectors at LNGS show less than 2%

Technical challenges

Main challenge: Reduction of background-index in the ROI:

Current background: ~0.5 cnts/keV/kg/yr

Required background: ~0.001 cnts/keV/kg/yr

Technical challenges

- 90% enr. ¹¹⁶Cd available commercially (NEMO-3)
- Purification can be done (NEMO-3, PPM Materials)
- Redlen & eV Products recycle raw material
- Redlen total annual CZT manufacturing: 200kg (all sizes and types)

- 1% E_{res} at 2.8MeV with standard 1cm³ detectors and has been demonstrated
- E_{res} < 1% at 662 keV has been shown for 6cm³ detectors based on 11x11 pixelated design (Z. He, Uni Michigan)
- Can high E_{res} be achieved with the Quad-design investigation ongoing
- Contacting scheme

Main Costs:

- Enrichment of ¹¹⁶Cd for detector manufacturing
- Purification at PPM-Materials
- Detector manufacturing of high performance Quad-CPG detectors at Redlen and eV Products
- Requirements for cleanroom compatible manufacturing at vendor sites

Requests for technical and technological infrastructures

- Cleanroom for detector module assembly mandatory
- Preferably integrated into lab-environment with direct connection to experimental setup

COBRA detectors are room-temperature semiconductors, very low risk:

- Inert semiconductor material (CZT)
- No flammable liquids
- No toxic liquids
- No cryogenic gases (besides the nitrogen for flushing the setup)
- No cryostats
- Calibration sources needed (low activity ²²⁸Th, ²²Na)

- Funded DFG-project to build of 3x3 layered 6cm³ detector, operation has started in fall 2014
- Detector investigations and development of evaluation methods ongoing
- Installation of first 3x3 detector module at the LNGS planned for 2016/17
- Option to build solid state scintillator around crystals exists for 2017
- Technical Design Report by 2018

- COBRA is based on room temperature CZT detectors
- COBRA was the only DBD experiment in the original SNOLAB proposal to CFI
- Major target is Cd-116, one of six isotopes beyond the TI-208 line
- Strong interest on Cd-113 spectral shape for g_A
- COBRA demonstrator with 64 detectors running at LNGS since Nov. 2013
- COBRA is a low risk experiment, very modular and easily scalable

 COBRA is working with a Canadian company on the detectors, some Canadian institutes show interest... So why not running the experiment in SNOLAB?

More collaborators welcome!

Projected sensitivity of a largescale COBRA setup

- Detection- & cut-efficiency as high as possible: $\varepsilon_{tot} > 0.6$
- Energy resolution: FWHM < 1.3% @ 2.8MeV
- Background index: B < 10⁻³ cnts/keV/kg/yr
- ¹¹⁶Cd enrichment: 90%