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0νββ in a Slide

3

• 2nd-order weak 
interaction 

• Requires v = v 
• Lepton-number violating 
• Example: virtual v 

exchange 

• Lifetime limits > 1025 yrs 
• Experiments: 

- Maximize exposure 
(mass) 

- Minimize background
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J. Detwiler

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF



A Next-Generation 
 76Ge 0νββ Experiment

SNOLAB Future Planning Workshop 
August 24, 2015

Exposure [ton-years]
3−10 2−10 1−10 1 10 210 310

 D
L 

[y
ea

rs
]

σ
 3

1/
2

T

2410

2510

2610

2710

2810

2910

3010

 rangemin
ββ IO m

Background free
0.1 counts/ROI-t-y
1.0 count/ROI-t-y
10 counts/ROI-t-y

Ge (87% enr.)76

3σ Discovery vs. Exposure for 76Ge

5

J. Detwiler

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure
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Germanium for 0νββ 
• Qval = 2039keV 

• Excellent energy resolution: 
<3keV FWHM @2039 

• HPGe detectors inherently 
low-background 

• Powerful background 
rejection techniques: 

- Granularity rejects compton 
scatters in multiple detectors 

- PPC timing response enables PSD 
of multi-site events 

- Low energy thresholds allow 
rejection of 68Ge events
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The MAJORANA DEMONSTRATOR
Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics (Nuclear Physics) 

with additional contributions from international collaborators.

Goals:   - Demonstrate backgrounds low enough to justify building a tonne scale experiment. 
 - Establish feasibility to construct & field modular arrays of Ge detectors. 
 - Searches for additional physics beyond the standard model.

• Located underground at 4850’ Sanford Underground Research Facility 
• Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV)   

    3 counts/ROI-t-y (after analysis cuts)  Assay U.L. currently ≤ 3.5  
    scales to 1 count/ROI-t-y for a ton experiment 

• 44.8 kg of Ge detectors 
– 29.7 kg of 87% enriched 76Ge crystals 
– 15.1 kg of natGe 
– Detectors: P-type, point-contact. 

• 2 independent cryostats 
– ultra-clean, electroformed Cu 
– 20 kg of detectors per cryostat 
– naturally scalable 

• Compact Shield 
– low-background passive Cu and Pb 

shield with active muon veto

8
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Deployment Location: SURF
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• MAJORANA UG site is Sanford Underground Research Laboratory 
– Main MJD lab at 4850L Davis Campus, beneficial occupancy in Feb. 2012.  
– Operating Temporary Cleanroom Facility (TCR) at 4850L Ross Campus since Spring 2011.
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Ge Processing and Recovery

Ge reduced in Chlorine gas

• Better than 98% yield from original 42.5-kg of enrGe (61.7-kg of GeO2) 

• Recovered Ge from processing manufacturing waste 
– 8.4-kg of “scrap” reprocessed 

• 2.87 kg of metal from detector manufacturer reject. 

• 5.87 kg of Ge with ρ >47 Ohm-cm recovered from the manufacturing effluent and 
kurf.  

– Combined with 3.22 kg of remaining Ge material to yield 9.1 kg of Ge > 47 Ohm-cm 

• Resulted in 74% yield of operating detectors, best to date for Ge 
experiments

10

GeCl4 with cover liquidZone refining of Ge metal
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Detector Fabrication
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Mean mass of 840 g  (Presently: 25.2 kg of detectors UG) 
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• 29.7kg of enrGe 
detectors 
underground at 
SURF 

• 35 detectors total 

• Mavg = 849g



A Next-Generation 
 76Ge 0νββ Experiment

SNOLAB Future Planning Workshop 
August 24, 2015

Detector Units and Strings
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• Detectors installed in individual mounts 

• Detector Units stacked into strings of 
4-5 detectors each 

• Low-mass Copper & PTFE
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Detector Readout
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May 2015 A. Poon, MJD Annual Review 

Readout Electronics 

30 

•  Established workspace at a class-100 cleanroom for front-end production 
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enrGe Energy Resolution in MJD String
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Resolution in both high/low gain channels for two detectors 
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enrGe Energy Resolution
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Comparison of measurements done at ORTEC and SURF 
within the vendor cryostat. All are better than specification. 
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MAJORANA Electroformed Cu

Electroforming Baths in TCR

16

• MAJORANA operated 10 baths at the Temporary Clean Room (TCR) facility at the 4850’ level and 6 
baths at a shallow UG site at PNNL. All copper was machined at the Davis campus. 

• The electroforming of copper for the DEMONSTRATOR successfully completed in April 2015.   
- 2474 kg of electroformed copper on the mandrels 
- 2104 kg after initial machining, 
- 1196 kg that will be installed in the DEMONSTRATOR. 

• We continue to operate 5 baths in the TCR as backup stock for MAJORANA and for other 
experiments. 

Inspection of EF copper on mandrels EF copper after turning on lathe

• Th decay chain (ave) ≤ 0.1 µBq/kg 
• U decay chain (ave)  ≤ 0.1 µBq/kg
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EFCu Finished Components
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MJD Materials Assay
• Assay of samples from all materials used in the DEMONSTRATOR.  

- Radiometric, NAA, & ICP-MS techniques.   
• Have developed world’s most sensitive ICP-MS-based assay techniques for  

U and Th in Cu  (Original MJD Goal: <0.3 µBq/kg for U & Th ) 
- Current MDL (method detection limits) with iridium anode improvements 
‣ U decay chain  0.1 µBq  238U/kg 
‣ Th decay chain 0.1 µBq  232Th/kg 

- Sensitivities with ion exchange copper sample preparation (MDL study) 
‣ U decay chain  <0.13 µBq  238U/kg 
‣ Th decay chain <0.034 µBq  232Th/kg

Evaluation of iridium electrodes following copper sample preparation

18

Ion exchange sample prep

NIM A 775 (2015) 93-98
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Modules

19

Detector strings 

LN dewar 

Ballast tank 

Pressure monitor & relief 

Vacuum 
system 

Vacuum vessel 

Condenser 

Cold plate Thermosyphon 
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Modules

20
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Shield

21
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DAQ

22

M.$Howe,$MJD$Annual$ReviewMay$2015

8

DAQ Systems

PDSF 

Prototype DAQ Status
• 20 digitizer, 32 VETO, 10 HV channels
• 100 MHz clock distribution
• In shield since July '14

Preamps

Module 1 DAQ Status
• 58 digitizer, 29 HV channels
• Currently runs independently of 

Prototype

NIMPreamps

HV

HV

VME

VME

Prototype
Module

Module 1

RAID
Backup

Backup

VETO

Private 
Network

Network

DAQ
Computer

• 10ch, 14-bit, 100Mhz FPGA-
based waveform digitizers 
from Gretina Collaboration 

• Single board computer 
VME controller 

• ORCA-based DAQ software 

• Data shipped to PDSF 
(NERSC) for processing and 
analysis
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MAJORANA DEMONSTRATOR Simulation
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5 year MJD run:  30 kg 87% enriched 76Ge; 92% fiducial; 90% livetime  (108 kg-years)

76Ge 0νββ at 2039 keV
60Co Σ (cosmogenic) at 2506 keV
208Tl (232Th series) at 2614 keV 

60Co

40 K

3H,  
68Ge

20
8 Tl60 Co

208Tl 

68Ga

U/Th in Ge

Bi-Po  
pile-upfast-n 

2νββ
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DEMONSTRATOR Background Budget

24

Based on achieved assays of materials 
When UL, use UL as the contribution

Goal: ≤ 3.0 cts / ROI-t-y 
Scales to 1.0 cts / ROI-t-y  
for a larger experiment( )
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MJD Implementation
Three Steps                                           

– Prototype Module* : 7.0 kg (10) natGe 
 3 strings  

– Module 1 : 16.8 kg (20) enrGe, 
 7 strings     5.7 kg (9)  natGe 

– Module 2 : (12.9 kg (15) enrGe, 
 7 strings     9.4 kg (15) natGe)

✴ Same design as Cryos 1 & 2, but fabricated using 
OFHC Cu (non-electroformed) components.

25

In Shield 

June 2014 

May 2015 

End 2015 (est)
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MJD Module 1 Status
• May 2015 

- Prior to cool-down 28 of 29 detectors showed good baselines 
- Efforts to seal with low-background parylene gaskets failed, switch to Kalrez® o-rings for initial 

commissioning.  Investigating additional alternate low-background seals. 

• June 2015 
- In shield, with 23 of 29 detectors operating.  Non working detectors — signal connector (3), HV 

connection (1), leakage current (1), HV or front end (1).  
- Inner electroformed copper shield not installed (machining underway), outer poly shield, partially 

installed. 
- Commissioning (completed in July), calibration, background runs. 

• Sept. - Oct. 2015 
- Remove from shield, install inner copper shield, open cryostat, attempt to fix connectors and HV 

connections, install low-background vacuum seals, return to shield.

26

Module 1 - ready for insertion into shield
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228Th Calibration Spectrum in M1
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M1 Pulse-Shape Discrimination

28
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M1 Pulse-Shape Discrimination

28
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MJD Module 2 Status

• Inner Cu shield in fabrication 

• Vacuum system assembled 

• Cryostat components fabricated 

• 1st string assembled

29
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MAJORANA DEMONSTRATOR Summary

- From assays, the background budget projects to :  
< 3.5 counts/4 keV/t-y.   MJD goal of 3.   

- Assay campaign completed. ICP-MS assays show 
that the Cu electroformed underground is very 
clean. 

- 29.7 kg of characterized enriched detectors 
underground. Successful Ge recovery. 

- Module 1 with 7 strings started in-shield 
measurements in June. 

- Phased start of operations in 2015 as we complete 
fabrication and assembly of Module 2.

30
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M. Green 
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Rates (Sensitivity) Per Unit Mass
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Typically phase space is expressed in activity per atom,  
not per unit mass.  

32

R.G.H. Robertson, MPL A 
28 (2013) 1350021 
(arXiv 1301.1323)

The phase space G0⌫ is in

activity per atom

The phase space H0⌫ is in

activity per unit mass
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Sensitivity to <mββ>

uncertainty on 
value of gA4

uncertainty 
on NME2

For Ge, Te, Xe, Nd

33

R.G.H. Robertson, MPL A 
28 (2013) 1350021 
(arXiv 1301.1323)

Signal of  
1 cnt/t-y for 
corresponding 
values of NME 
and gA 
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Sensitivity per unit mass of isotope

R.G.H. Robertson, MPL 
A 28 (2013) 1350021 
(arXiv 1301.1323)

Inverse correlation 
observed between 
phase space and the 
square of the nuclear 
matrix element .

geometric mean of the 
squared matrix 
element range limits & the 
phase-space factor 
evaluated at gA=1

➡ Isotopes have comparable sensitivities in terms of rate per unit mass

The points in order of increasing abscissa value 
are: 48Ca, 150Nd, 136Xe, 96Zr, 116Cd, 124Sn, 
130Te, 82Se, 76Ge, 100Mo and 110Pd.
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0νββ Signals & Sensitivity
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Note : Backgrounds do not always scale with active detector mass
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Conclusion: 

Based on current knowledge, 
and planned enrichment 
levels, isotopes have roughly 
comparable sensitivities per 
unit mass, when comparing 
for the best case of zero 
backgrounds. 
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Required 3σ Exposure vs. Background

37

J. Detwiler
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Take away: 

Realistically, a next 
generation experiment 
should aim for 
backgrounds at or 
below 0.1 c/ROI-t-y 
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Next Generation 76Ge
• MAJORANA and GERDA are working towards the establishment of a single 

international 76Ge 0νββ collaboration. 
• Envision a phased, stepwise implementation; 

      e.g. 250 → 500 → 1000 kg 
• Assuming background of 0.1 c / ROI-t-y 

                  5 yr 90% CL sensitivity: T1/2 > 6.1·1027 yr 
                 5 yr 3σ discovery: T1/2 ~ 5.9·1027 yr  

• Moving forward predicated on demonstration of projected backgrounds 
by MJD and/or GERDA, and eventual further reductions at the large scale.  

• Anticipate down-select of best technologies, based on results of the two 
experiments.

Compact shield Cryogenic shield

39
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Towards a Ton Scale 0νββ Experiment
• Recent & Upcoming Joint meetings 

- MAJORANA - GERDA,  Sept. 2013, Santa Fe 
- Sino-German Ge Workshop, May 2014, 

Beijing,  
- Large Scale 0ββ, July 2014 MPP Munich 
- MAJORANA - GERDA,  Dec. 2014, Heidelberg 
- Sino-German Ge Workshop, October 2015, 

Kreuth, Germany  
- MJD-GERDA, Nov. 2015, Kitty Hawk, NC 
- Open Ton Scale Ge Meeting, Spring 2016 

• MAJORANA - GERDA 
- Considering joint analysis of combined data 

from GERDA Phase II and MJD 
- MaGe Simulations framework 
- Coordinated efforts on large scale R&D 
- Discussions on potential first “staging” for 

ton scale, 200 kg 

40

Matteo Agostini, TUM, GERDA 
arXiv:1506.06133  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Background Reduction Techniques

41

•MAJORANA — Ultrapure Cu & Pb 
– Vacuum cryostat 
– Passive Pb & Cu 

compact shield

MAJORANA GERDA

•GERDA — Liquid Argon and Water Shield 
– Bare Detectors in cryoliquid 
– Low-Z active shield 
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GERDA 76Ge Phase I (2014)
• 87% enriched 76Ge detectors (crystals) in LAr  
• Qββ=2039 keV   
• 14.6 kg of 86% enriched 76Ge (6 p-type semi-coax 

detectors from H-M & IGEX). (4.8 keV FWHM @ Qββ) 
• 3 kg of 87% enriched BEGe enriched detectors (5 

detectors) (3.2 keV FWHM @ Qββ) 
• Single-site, multi-site pulse shape discrimination                

42

GERDA Collaboration, PRL 111 (2013) 122503  
Eur. Phys. J. C (2014) 74:2764

• 21.6 kg-year exposure 
• Frequentist  

T1/2 > 2.1 x 1025 y (90% CL) 
• Bayesian 

T1/2 > 1.9 x 1025 y (90% CL)
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GERDA Phase II

43

modified almost everything relative to Phase I, now: veto + most detectors installed

5 strings in  
nylon foil

bottom PMT

top PMT

fibers + SiPM
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Initial Performance with Active Shield

44

226Ra calibration data

combined rejection ~30 at 2039 keV (90% accept.) 
for 228Th calibration source rejection factor ~300  

past dominant backgrounds  
expected to become small in Phase lI

Preliminary 228Th calibration (1 string)

energy resolution @ 2.6 MeV between 
2.6 and 3.4 keV (FWHM) for BEGe 

noise still to be improved for some det., 
some detectors have high current and 
might need repair by manufacturer 
→ more iterations before Physics run
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Challenges Beyond Phase II
• Background:  for quasi-background-free operation beyond Phase II need to further 

reduce backgrounds 
- argon veto & cleaner materials (e.g. Cu, PTFE a la MJD)→ Ra & Th should be ok 
- 42Ar: needs further study e.g. in (existing) test cryostat 

• options: thicker n+ layer, limit volume from which 42Ar is collected, PSD, depleted 
Ar, … 

- muon induced background e.g. neutrons → 77mGe,   cut on delayed coincidences 

• Argon veto:  need to detect light produced inside a compact array of detectors, 
- need to reduce radioactivity 

• Detector operation: in Phase I  2 of 8 detectors had higher current after 18 months  
- operation; could be cured at LNGS. What fraction in Phase II? 

• Engineering for large number of detectors (e.g. feedthroughs, cable chains, …) 
- no fundamental problem, might need iterations → cost + time   

Experience from Phase II running extremely important for any  
future large scale Ge experiment                

45
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Background Reduction Techniques

46

•MAJORANA — Ultrapure Cu & Pb 
– Vacuum cryostat 
– Passive Pb & Cu 

compact shield

MAJORANA GERDA

•GERDA — Liquid Argon and Water Shield 
– Bare Detectors in cryoliquid 
– Low-Z active shield 
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DEMONSTRATOR Background Budget
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Based on achieved assays of materials 
When UL, use UL as the contribution

Goal: ≤ 3.0 cts / ROI-t-y 
Scales to 1.0 cts / ROI-t-y  
for a larger experiment( )
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Next-Generation Experiment
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If MJD and GERDA Phase II reach their background goals of 3-4 c/ROI-t-y, 
that would scale to 1 c/ROI-t-y for a large scale Ge experiment. 

Based on both discovery level and sensitivity considerations, would like to 
aim for a total background budget of ≤ 0.1 c/ROI-t-y. 

Building on MAJORANA and GERDA 
how does one get there?
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Next-Generation Experiment
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• Robust Signal and High Voltage Connectors 

• Ultra-Clean Materials 

• Required depth 

• Cooling and shielding 

• Alternative Detector Designs 

• Detector Signal Readout 

• Cryostat and Detector Mount Designs 

• Enrichment

Next Generation 0νββ R&D

49

Applicable 
to any future 
experiment

Specific  
to 76Ge
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• MAJORANA has produced some of the lowest activity cables and connectors  
currently in use.  

• Tension between low-activity components and robust electrical connections 
(e.g. clean spring material).  Both MAJORANA and GERDA have encountered 
connection or connector issues.

Robust Signal & High Voltage Connectors

50
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• Proposed to apply current knowledge to developing next generation cables, 
working in conjunction with commercial vendors. 

-  Connector design 
-  High voltage contact design 
-  Improve Cu wire radiopurity 

• outcomes from all of these activities can be applied toward or utilized in all the 
proposed next-generation 0νββ and DM experiments.

Robust Signal & High Voltage Connectors

51



A Next-Generation 
 76Ge 0νββ Experiment

SNOLAB Future Planning Meeting 
24 August 2015

• Improved electroforming with larger mandrels and improved reliability  
– Larger mandrels could allow for more cost-effective production of ultra-

clean Cu 
– Would like to optimize process in terms of growth rate 

• Electroforming Cu Alloys 
– Copper is ductile and difficult 

to machine 
– Additional materials will 

simplify mechanical designs 

Ultraclean Materials

52
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Ultraclean Materials

53

• Have observed that small parts 
have small measurable activity 
of U & Th 
(0.2 to 1.0 µBq/kg, while bulk 
material is at upper limit of 
sensitivity (≤ 0.1 µBq/kg).   

• This has a neglible impact on 
MJD, but is important for next-
generation experiments.

1.0 µBq/kg 228Th = 0.2465 ppt 
1.0 µBq/kg 238U = 0.08041 ppt
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Samples vs Finished Parts

54
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Increasing surface area : mass

30% mass-removal etch  
sample coupons

30% etch 
w/ dirty 

machining
complex machined + EDM 
parts with production etch

complex EDM 
only parts with 
production etch
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•Clean welding techniques 
– Much of the 60Co activity is associated with taking the material to the 

surface for e-beam welding.   
– Would like to develop a 

method for underground, 
clean room compatible 
welding of materials. 

•Future plans include tests with: 
– Alternative welding 

techniques 
– Welding alloys 
– Weld assays

Ultraclean Materials

55
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Detector Development
• Typical detector: 

– Diameter ~68mm 
– Height ~48mm 
– Mass ~1 kg 
– Active volume ~90% 

• Larger detectors 
– Utilize valuable germanium  

more efficiently 
– Reduced electronics,  

surface area, small parts 
• Explore alternatives to thick  

Li contacts 
– Improved fiducial volume 
– Decreased slow pulses 
– Must balance sensitivity  

to alphas

56
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Front-End Electronics
• Current Design: 

– Clean Au+Ti traces on fused silica, amorphous Ge resistor, 
FET mounted with silver epoxy, EFCu + low-BG Sn contact pin 

– Feedback loop closed at 1st stage outside shield 
– At the limit of cable length 

• Feasibility study of in-situ  
amplification with a custom 
ASIC 

• Integrated signal processing 
into the custom ASIC optimized 
for operation at cryogenic  
temperature 

57
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• Enrichment 
- The scale and cost of U.S. based enrichment is being examined in an ONP Isotopes 

Program funded study at ORNL (Isotopes group).  
• A positive side benefit would be the capital investment in a U.S. facility for the stable 

isotopes program. 
- An alternate enrichment concept is being investigated by an Isotopes Program funded  

2-year study at PNNL. 

• Required depth 
- Using the Demonstrator data to learn how neutron- and muon-induced backgrounds scale 

with deployment depth. This directly impacts the siting decision of a Next-Generation Ge 
Experiment.

Other Next-Generation 0νββ R&D

58
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Next-Generation 76Ge 0νββ Experiment
• All isotopes are comparable in terms of sensitivity per unit mass. 
• Backgrounds are the key to all future 0νββ experiments. 
• To date, 76Ge has achieved the lowest backgrounds of all 0νββ 

measurements.  Moving forward with 76Ge is predicated on demonstration 
of projected backgrounds by MAJORANA and/or GERDA Phase II, and 
eventually realizing even further reductions at the large scale. 

• Both the MAJORANA DEMONSTRATOR, with Module 1,and GERDA Phase II have 
started collecting initial data.  We expect to have initial understanding of 
backgrounds during 2016. 

• Based on what has already been learned, an active shield will likely be 
required for the large scale.   

Hybrid shield
59
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Outline

• MAJORANA DEMONSTRATOR Overview and Current Status - 
M. Green 

• Germanium for Next-Generation 0νββ - 

C. O’Shaughnessy 

• Engineering and Infrastructure Needs for Next-
Generation Ge - 

M. Busch
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Outline
• Facility performance of SURF for MAJORANA 

DEMONSTRATOR 

• Concept layout of Next-Generation Experiment and 
facility requirements 

• R&D ideas for optimizing fabrication and assembly

61
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MAJORANA DEMONSTRATOR at SURF

62

Yates

#3 Winze#6 Winze

Ross

Ramp to 
4700L/5000L

Davis Campus

Ross Campus

  MAJORANA Main Lab

                       MAJORANA Electroforming Lab
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Eforming Facility at SURF

• Generally good cleanroom 
performance, but susceptible to 
window A/C wear and external 
conditions. 

• Acid fumes during initial 
cleaning leads to corrosion of 
electronics. Computers moved 
to ante room. 

• Waste stream: 
- Initial setup requires 200L/bath of 3 

Molarity Nitric Acid 

- 300-400L/bath/yr Cu-Sulfate, 
electrowinned to ~2pH Sulfuric Acid
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Davis Campus at SURF
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Initial Machining of UGEFCu
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EF copper after turning
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Final Machining 
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Cleanroom Performance
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From Terra Universal website (cleanroom vendor)

“Particle Count” = # of particles of 0.5 micron or larger per cubic foot, roughly equivalent to Federal 
Standard 209E Class # rating
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Air Exchange is Duct-Limited at SURF
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MAJORANA SURF Cleanrooms
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Room air exchanges / hr particle count at rest 
(size > 0.5µm)

particle count in use 
(size > 0.5µm)

Component path

eforming (TCR) 60 10-500 50-1000

machine shop 13 50-200 50,000-200,000

chemical lab 220 0 0-10

glovebox 2-5 (N2) 0 0-50

Personnel path at Davis Campus

common corridor 32 1,000-10,000 ~10,000

detector room 20 20-100 100-500

string testing room 14 20-100 100-500
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Typical Week for Shop and DR
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Detector Room Machine Shop
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Typical Week for Detector Room
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Machine Shop Electrical/EMF Noise
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Wire EDM running 
Wire EDM running 
Wire EDM not running

Typical Noise Spectra, Prototype Module
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Improvements for a Future Facility 
• Physically and electrically isolate machine tools from 

experiment while maintaining clean process flow 

• Determine source(s) of part contamination and focus 
on these areas for improved process control and/or 
cleanliness (R&D in process) 

• Design inventory control, waste handling, assembly, 
and test plan into facility 

• Add clean welding capabilities to machine shop or 
assembly area 

• Incorporate more production tooling in shop, cleaning, 
and assembly for improved process control and 
increased throughput
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Conceptual Layout
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Machine Shop
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Machine Shop Improvements

75

• Could be remote, but quick access to etching facility may be 
more important 

• Include space for clean material and parts storage and QC 

• Airlock isolation doors shown 

• Include welding facility 

• 2nd-tier clean shop for tooling fabrication would be useful 

• Ideas to reduce particle counts: 

- Investigate cryogenic tool cooling:  
http://www.coolclean.com/cooling.php 

- Investigate high-throughput smoke/mist eliminators at tools 

- Investigate brushless motor drives for tools

http://www.coolclean.com/cooling.php
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Conceptual Layout
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Eforming and cleaning
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E-Forming & Cleaning Improvements
• Combined space simplifies waste handling and 

handling expertise, similar cleanliness requirements 
and challenges 

• Etching could happen in large fume hood or sealed 
and recirculated glovebox to improve process control 
and reduce environmental impact to surrounding 
space. 

• Glovebox/drybox part drying requires high gas 
throughput.
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Conceptual Layout
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final QC, inventory control
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Final Staging
• Glovebox transfer from etching dryer to purged 

storage and on to purged assembly glove boxes 
would eliminate exposure to Rn. 

• Mini-warehouse style encoded modular shelving (in 
purged environment) would simplify inventory 
management
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Conceptual Layout
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final QC, inventory control

eform, etch

machine shop

DAQ, cryogen service

purged staging, 
initial assembly, 
verification testing

purged final assembly and installation
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Facility Needs Summary
• Final science needs will not be final until MAJORANA 

DEMONSTRATOR and GERDA analyze data. 

• Cleanliness can be improved, but new assay studies 
will inform areas of concentration and primary 
concern. 

• Large machine tools may need to be in surface 
cleanroom. 

• E-forming and etching lab have special cleanliness 
and isolation needs, waste handling requirements.
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J. Detwiler

Assumes 81% efficiency based on CUORE-0. Natural Te is accounted for in the exposure

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF
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3σ Discovery vs. Exposure for 136Xe
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J. Detwiler

Assumes 84% efficiency based on ΕΧΟ 200.  Enrichment level is accounted for in the exposure

Note : Region of 
Interest (ROI) 
can be single or 
multidimensional 
(E, spatial, …)

Inverted Ordering (IO) 

Minimum IO mββ=18.3 meV, 
taken from using the 
PDG2013 central values of 
the oscillation parameters, 
and the most pessimistic NME 
for the corresponding isotope 
among QRPA, SM, IBM, PHFB, 
and EDF
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Required Sensitivity vs. Background
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J. Detwiler
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Required 3σ Exposure vs. Background
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J. Detwiler

Background [c/ROI-t-y]
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mββ=18.3 meV, taken from 
using the PDG2013 central 
values of the oscillation 
parameters, and the most 
pessimistic NME for the 
corresponding isotope 
among QRPA, SM, IBM, PHFB, 
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Backgrounds in experiments

88

Experiment Mass [kg] 
(total/FV*) Bkg (cnts/ROI-t-y) Width 

(FWHM)
CUORE0 130Te 32/11 300 5.1 keV ROI

EXO-200 136Xe 170/76 130 88 keV ROI

GERDA I 76Ge 16/13 40 4 keV ROI

KamLAND-Zen  
(Phase 2)

136Xe 383/88 210 per t(Xe) 400 keV ROI

CUORE 130Te 600/206 50 5 keV ROI

GERDA II 76Ge 35/27 4 4 keV ROI

MAJORANA 
DEMONSTRATOR

76Ge 30/24 3 4 keV ROI

NEXT 100 136Xe 100/80 9 17 keV ROI

SNO+ 130Te 2340/160 45 per t(Te) 240 keV ROI

* FV = 0νββ isotope mass in fiducial volume (includes enrichment factor) 
† Region of Interest (ROI) can be single or multidimensional (E, spatial, …)

†
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From NSAC Long Range Plan  
Resolution Meeting 0νββ talk 
V. Cirigliano & J.F. Wilkerson


