Current and Future of DarkSide

Dark Matter Experiment

Masayuki Wada
Princeton University
on behalf of the DarkSide Collaboration
25 Aug. 2015

DarkSide Program

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from backgrounds (both from neutrons and β/γ's)

DarkSide Program

Multi-stage program at Gran Sasso National Laboratory in Italy

DarkSide 10 Prototype detector

DarkSide 50
First physics detector
Commissioned Oct.2013

DarkSide-20k

30 tonne (20 tonne fiducial depleted argon detector proposed to LNGS for operations within **2020**)

DarkSide 50

Radon-free Assembly

Clean Room

1,000-tonne Water-based Cherenkov **Cosmic Ray Veto**

30-tonne Liquid Scintillator Neutron and y's Veto

Inner detector TPC

Two Phase Argon TPC

Nuclear Recoil excites and ionizes the liquid argon, producing scintillation light (S1) that is detected by the photomultipliers

Detecting WIMPs

The ionized electrons that survive recombination are drifted towards the liquid-gas interface by the electric field.

Electron drift lifetime > 5 ms, compared to max. drift time of \sim 375 μ s

Electron drift speed = $0.93 \pm 0.01 \text{ mm/}\mu\text{s}$

Detecting WIMPs

The electrons are extracted into the gas region, where they induce electroluminescence (S2)

The time between the S1 and S2 signals gives the vertical position

Backgrounds

[30-200] keVr

ELECTRON RECOILS

39Ar ~9x10⁴ evt/kg/day

γ ~1x10² evt/kg/day_

NUCLEAR RECOILS

~30 evt/m²/day

Radiogenic n ~6x10⁻⁴ evt/kg/day

 α ~10 evt/m²/day

- Intrinsic ³⁹Ar radioactivity in atmospheric argon is the primary background for argon-based detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is ineffective)
- ³⁹Ar is a cosmogenic isotope, and the activity in argon from underground sources can be significantly lower compared to atmospheric argon
- Recently DarkSide deployed underground argon. Update will be at the end of this talk.

arXiv:1204.60111 [physics.ins-det]

Pulse Shape Discrimination

Electron and nuclear recoils produce different excitation densities in the argon, leading to different ratios of singlet and triplet excitation states

Liquid Scintillator Veto

Liquid scintillator allows coincident veto of **neutrons** (and γ's) in the TPC and provides *in situ* measurement of the neutron background rate

- 4 m diameter sphere containing PC + TMB scintillator
- Instrumented with 110 8" PMTs

Odd time structure: ¹⁴C content is too high (~98% efficiency) to achieve design efficiency (~99.5%) after the first fill.

The TMB was replaced with new low ¹⁴C TMB (Jan. 2015). ¹⁴C activity decreased from **150 kBq** to **0.3 kBq**.

External Water tank

- 80 PMTs within water tank
 (11 m diameter x 10 m height)
- Acts as a muon and cosmogenic veto
 (~ 99% efficiency)
- Provides passive γ's and neutron shielding

Radon-Free Clean Rooms

Radon daughters plate out on surfaces of the detector causing dangerous alpha-induced nuclear recoils.

Final preparation, cleaning, evaporation and assembly of all inner detector parts was carried out in radon-free clean rooms.

Typical radon in air ~ 30 Bq/m³
Cleanroom radon levels < 5 mBq/m³

DS50 Commissioning

TPC Calibration

TPC: ER calibration @ null field

83mKr Half-life = 1.83 hours

^{83m}Kr gas deployed into detector (41.5 keV_{ee})

Fits to ³⁹Ar and ^{83m}Kr spectrum indicate AVERAGE LIGHT YIELD: 7.9 ± 0.4 PE/keV_{ee}

SCENE

(Scintillation Efficiency of Nuclear Recoils in Noble Elements)

⁷Li(p, n)⁷Be reaction produces low energy monoenergetic neutrons TOF measurement between target, LAr and organic scintillators allows clean identification of elastic neutron interactions of known energy

The First Physics Result from DS-50

Background-free exposure of 1422 ± 67 kg·day

Phys. Lett. B 743 (2015) 456

Selected only single-hit interactions in the TPC fiducial volume (36.9 kg) with no energy deposition in the veto

Background-free exposure of 1422 ± 67 kg·day

Selected only single-hit interactions in the TPC fiducial volume (36.9 kg) with no energy deposition in the veto

Dark Matter exclusion plot

This is the most sensitive dark matter search performed with an **argon** target. The WIMP-nucleon spin-independent cross section is **6.1×10⁻⁴⁴** cm² for a WIMP mass of 100 GeV/c².

DS50 Timeline

- Oct. 2013: LArTPC, Neutron Veto and Muon Veto commissioned.
 - TPC filled with atmospheric argon (AAr).
- Up to June 2014: data taken with high ¹⁴C content in LSV.
 - 47.1 live days (1422 kg day fiducial) for the first physics result.
 - TMB (¹⁴C) was removed to reduce the ¹⁴C rate.
- Oct. to Dec. 2014: Calibration of TPC w/ radioactive sources.
- Jan. 2015: Add radiopure TMB at 5% concentration.
- Mar. to Apr. 2015: Fill with UAr and re-commissioning the detector.
- Apr. to Aug. 2015: Accumulate data with UAr for dark matter search.

DS-50 Current Status

Status of Liquid Scintillator Veto

¹⁴C activity decreased from 150 kBq to 0.3 kBq.

CALIS - CALibration Insertion System

Calibrate both **TPC** and **Neutron veto**

- **Gamma sources:** ⁵⁷Co (122 keV), ¹³³Ba (356 keV), ¹³⁷Cs (663 keV)
- Neutron source: AmBe w/ and w/o collimator
- Different drift fields: null, 100 V/cm, 150 V/cm, 200 V/cm

NR from AmBe source

NR band matches with the points extrapolated from SCENE.

Underground Ar

Plant at Colorado

1. Extraction at Colorado (CO₂ Well)

Extract a crude argon gas mixture (Ar, N₂,

and He)

UAr bottles at LNGS

3. Arrived at LNGSReady to fill into DS-50

Distillation Column at Fermilab

Underground Ar

Concentration of ³⁹Ar in UAr is at least 300 times lower than in AAr.

Low level of ³⁹Ar allows extension of DarkSide program to ton-scale detector.

Future Detectors

DS-20k

30 tonne (20 tonne fiducial) detector

ARGO

300 tonne (200 tonne fiducial) detector

Requirements for DS-20k

Neutron Background:

- Cosmogenic: Veto system
- Radiogenic: radiopure SiPM & ultra-clean Titanium (TPC cryostat)

β/γ background:

- ³⁹Ar: Underground Argon (Urania Project) & Depleted Argon (Aria Project)
- y: SiPM & ultra-clean Titanium

Further Depletion of Ar

Urania (Underground Argon):

Expansion of the argon extraction plant in Cortez,
 CO, to reach capacity of 100 kg/day of Underground
 Argon

Aria (UAr Purification):

 Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon

Experiment	σ [cm ²] θ 1 TeV/c ²	σ [cm ²] θ 10 TeV/c ²
LUX [10k kg×day Xe]	1.1×10 ⁻⁴⁴	1.2×10 ⁻⁴³
XENON [7.6k kg×day Xe]	1.9×10 ⁻⁴⁴	1.9×10 ⁻⁴³
DS-50 [1.4k kg×day Ar]	2.3×10 ⁻⁴³	2.1×10 ⁻⁴²
ArDM [1.5 tonne×yr Ar]	8×10 ⁻⁴⁵	7×10 ⁻⁴⁴
DEAP-3600 [3.0 tonne×yr Ar]	5×10 ⁻⁴⁶	5×10 ⁻⁴⁵
XENON-1ton [2.7 tonne×yr Xe]	3×10 ⁻⁴⁶	3×10 ⁻⁴⁵
LZ [15 tonne×yr Xe]	5×10 ⁻⁴⁷	5×10 ⁻⁴⁶
DS-20k [100 tonne×yr]	9×10 ⁻⁴⁸	9×10 ⁻⁴⁷
1 Neutrino Event [400 tonne×yr Ar or 300 tonne×yr Xe]	2×10 ⁻⁴⁸	2×10 ⁻⁴⁷
ARGO [1,000 tonne×yr]	9×10 ⁻⁴⁹	9×10 ⁻⁴⁸

DarkSide-20k and Argo Lol Signatories

- D. Franco, A Tonazzo APC Paris
- D. Alton Augustana College
- A. Kubankin Belgorod National Research University
- K. Keeter, B. Mount Black Hills State University
- L. Romero, R. Santorelli CIEMAT
- S. Horikawa, K. Nikolics, C. Regenfus,
- A. Rubbia ETH Zürich
- S. Pordes Fermilab
- A. Gola, C. Piemonte FBK & TIFPA
- S. Davini GSSI
- E. Hungerford, A. Renshaw University of Houston
- M. Guan, J. Liu, Y. Ma, C. Yang, W. Zhong IHEP Beijing
- N. Canci, F. Gabriele, G. Bonfini, A. Razeto, N. Rossi,
- F. Villante LNGS
- C. Jollet, A. Meregaglia IPHC Strasbourg
- M. Misziazek, M. Woicik, G. Zuzel Jagiellonian University
- K. Fomenko, A. Sotnikov, O. Smirnov JINR
- M. Skorokhvatov Kurchatov Institute Moscow
- A. Derbin, V. Muratova, D. Semenov,
- E. Unzhakov PNPI Saint Peterburg
- S. De Cecco, C. Giganti LPNHE Paris
- H. O. Back PNNL
- M. Ghioni, A. Gulinatti, L. Pellegrini, I. Rech, A. Tosi,

- F. Zappa Politecnico di Milano
- C. Galbiati, A. Goretti, A. lanni, P. Meyers,
- M. Wada Princeton University
- A. Chepurnov, G. Girenok, I. Gribov, M. Gromov,
- I. Zilcov SINP MSU Moscow
- C.J. Martoff, J. Napolitano, J. Wilhelmi Temple University
- **E. Pantic UCDavis**
- Y. Suvorov, H. Wang UCLA
- A. Pocar UMass Amherst
- A. Machado, E. Segreto Campinas
- A. Devoto, M. Lissia, M. Mascia,
- S. Palmas Università & INFN Cagliari
- M. Pallavicini, G. Testera,
- S. Zavatarelli Università & INFN Genova
- D. D'Angelo, G. Ranucci Università & INFN Milano
- F. Ortica, A. Romani Università & INFN Perugia
- S. Catalanotti, A. Cocco, G. Covone, G. Fiorillo,
- B. Rossi Università Federico II & INFN Napoli
- C. Dionisi, S. Giagu, M. Rescigno Università La Sapienza & INFN Roma
- S. Bussino, S. Mari Università & INFN Roma 3
- J. Maricic, R. Milincic, B. Reinhold University of Hawaii
- P. Cavalcante Virginia Tech

Summary

Background free

- ³⁹Ar BG from **47.1 live days** (1422 kg · day fiducial) of AAr corresponds to that expected in **38.7 years** of **UAr** DS-50 run (»planning physics run time, 3 years).
- Concentration of ³⁹Ar in UAr is at least 300 times lower than in AAr.
- With the BG-free exposure of 1422 kg · day fiducial, DarkSide demonstrates ³⁹Ar BG rejection at level of 1 tonne·year with UAr.
- Future detectors are planned and Letter of Intent was submitted to LNGS April 27 2015.

THE END

Event Position in TPC

^{37}Ar

³⁷Ar is activated by cosmic rays.
Only 35 day half life
Provide low energy (~2-3 keV) calibration point.

Data from SCENE and the plots

- Left: the median of the f90 distribution for nuclear recoils as a function of energy as measured in the SCENE experiment
- Right: the quenching factor for nuclear recoils as measured by the SCENE experiment

Kr calibration data is used for cross calibration of light yield between DS50 and SCENE.

Multiple Interactions

Expected	Background Rejection	Backgrounds
WIMP signal	Technique	Removed
Single Interaction	Multiple S2 Cut in TPC Liquid Scintillator Veto	Neutrons, Gamma rays

S2/S1

Electron and nuclear recoils produce different ionization densities that lead to different fractions of electrons that survive recombination

Ratio of ionization and scintillation signal (S2/S1) can be used to distinguish between the two populations

Neutron Veto Commissioning

Coincident event in TPC and Neutron Veto

Light Yield: liquid scintillator VETO LY of about 0.5 PE/keVee, satisfactory for VETO requirements.

Borated Liquid Scintillator

- High neutron capture cross section on boron allows for compact veto size
- Capture results in 1.47 MeV a particle detected with high efficiency
- Short capture time (2.3 µs) reduces dead time loss

	Veto Efficiency (MC)	
Radiogenic Neutrons	> 99%*	
Cosmogenic Neutrons	> 95%	

Nuclear Instruments and Methods A 644, 18 (2011)