

Biological effects of ultralow radiation exposure

Chris Thome Dr. Douglas Boreham

SNOLAB Future Projects Workshop August 25, 2015

Research group

Dr. Douglas Boreham

Professor and Division Head of Medical Sciences – NOSM

Adjunct Professor – McMaster University

Principal Scientist – Bruce Power

Research interests:

- Low-dose radiobiology
- Diagnostic imaging
- Cancer therapy

Chris Thome

Post doctoral researcher - NOSM

Jake Pirkkanen

Graduate student – Laurentian University

Andrew Zarnke

Graduate student – Laurentian University

Funding

Bruce Power industrial support

- 2015: \$85,000
- 2016-2020: \$1,000,000 (\$200,000 per year)

NSERC discovery

• 2015-2020: \$190,000 (\$38,000 per year)

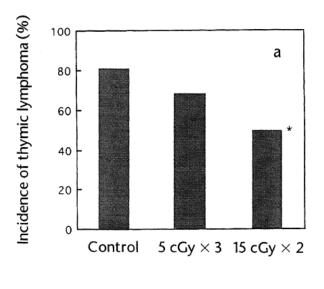
Mitacs Accelerate

• 2015-2017: \$330,000

NSERC CRD

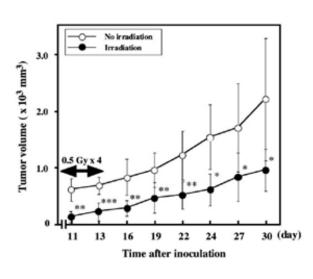
• 2016-2020: \$1,000,000 (\$200,000 per year)

Rationale

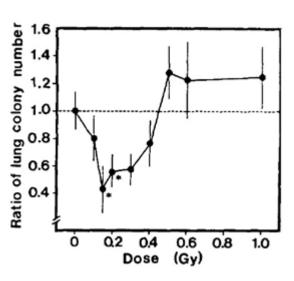


- Ionizing radiation is ubiquitous and all living organisms on earth
- There is increasing concern over radiation exposure from medical diagnostic procedures
- The effects from these exposures still remains largely unknown
- Limited epidemiological data exists in the low-dose region (< 100 mGy)
- There is growing evidence to suggest that low-dose radiation may provide beneficial effects to living systems
- SNOLAB provides a unique environment to examine the effects of ultralow background radiation exposure

Low-dose and cancer



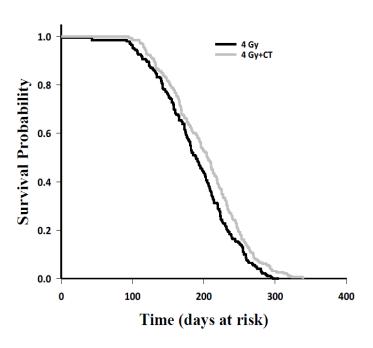
Reduction in cancer incidence

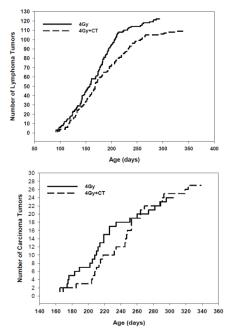

Ishii et al 1996

Decrease in primary tumor growth

Kojima et al 2004

Reduction in tumor metastases


Hosoi and Sakamoto 1993


Diagnostic imaging

CT Scan

- Increased mean survival time
- Increased latency of lymphomas and carcinomas

Phan et al

PET Scan

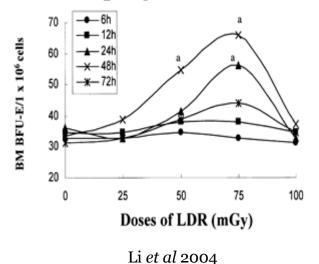
 Reduction in kidney disease

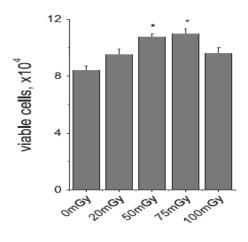
Table IV. Number of <i>Irp35+/-</i> mice with tissue-specific lesions				
Treatment	Kidneys	Bladder	Heart	Reproductive organs
Control	32	3	0	28
10 mGv v-ravs	23	6	0	20
10 mGy PET	15ª	0	0	27
		0	0	20

 $^{^{}a}P < 0.021$ relative to unirradiated control mice.

10 mGy PET + 4 Gy γ-rays

Taylor et al 2014

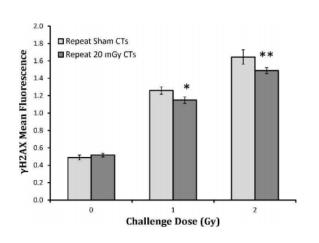

Growth stimulation


Increased body size in amphibians irradiated during embryogenesis (Stark *et al* 2015)

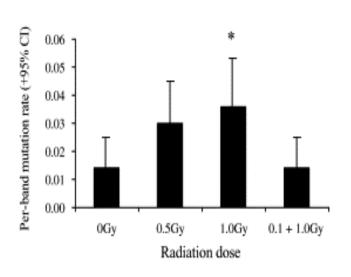
Increased plant size when seeds irradiated (Miller and Miller 1987)

Bone marrow hematopoietic progenitor cells

Cultured mesenchymal stem cells


Liang et al 2011

Adaptive response



Low-dose radiation exposure can protect against a future high-dose exposure

DNA DSB formation

Mutation rate

Phan et al 2012

Somers et al 2004

Hypothesis and Objectives

Hypothesis:

Natural background radiation is essential for life and maintains genomic stability in living organisms

Prolonged exposure to ultra-low radiation environments will be detrimental to biological systems

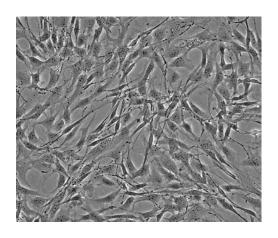
Objectives:

- 1. Establish a functional biological research laboratory within SNOLAB
- 2. Examine the effects of incubation in SNOLAB compared to surface control laboratory using 2 simple model systems
 - Cell culture C₃H 10T₁/₂ cell line
 - Whole organism Lake Whitefish embryonic development

Low background results

- 1. Removal of natural background radiation impairs growth. Growth rates are restored once radiation is artificially reintroduced. Demonstrated with:
 - Paramecium shielded with lead (Planel et al 1976)
 - Blue-green algae (Synechococcus lividus) shielded with lead (Conter et al 1983)
 - Yeast (Saccharomyces cerevisiae) shielded with lead/cadmium (Gajendiran and Jeevanram 2002)
 - Bacteria (*Deinococcus radiodurans*) grown in Waste Isolation Pilot Plant (WIPP) (Smith et al 2011)
 - Mouse lymphoma L5178Y cells shielded with lead (Taizawa et al 1992)
 - Mouse lymphoma L5178Y cells shielded with iron (Kawanishi *et al* 2012)

Low background results



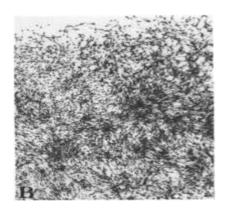
- 2. Removal of natural background radiation reduces repair capacity towards induced damage. Demonstrated with:
 - Survival fraction in yeast (*Saccharomyces cerevisiae*) shielded with lead/cadmium (Gajendiran and Jeevanram 2002)
 - Background/induced mutation rate in Chinese hamster V79 cells grown in Gran Sasso Underground Laboratory (LNGS) (Satta et al 2002)
 - Micronuclei formation and ROS scavenging in human lymphoblastoid TK6 cells grown in LNGS (Carbone *et al* 2010)

C3H 10T1/2 cell line

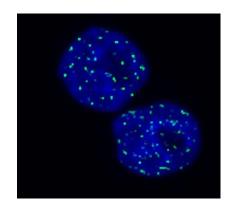
- Mouse embryonic stem cell line
- Pre-carcinogenic
- High spontaneous transformation rate
- Sensitive to low-dose ionizing radiation

Previous findings:

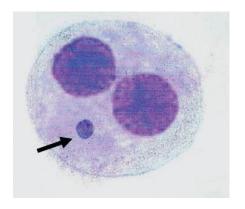
A single low-dose of radiation (1 mGy to 100 mGy) can decrease transformation frequency below spontaneous levels (Azzam et al 1996)


Chronic adapting low-doses of radiation (0.1 Gy, 0.65 Gy or 1.5 Gy) can protect against an acute challenge dose of 4 Gy (Azzam et al 1994)

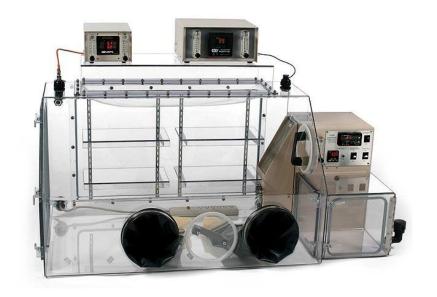
C3H 10T1/2 cell line



Radiobiological endpoints

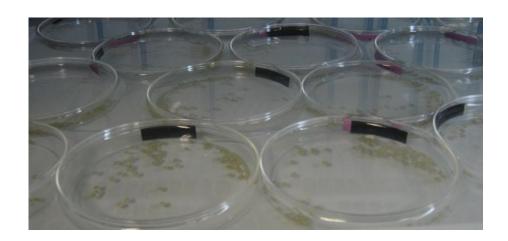

Transformation frequency

DNA DSB formation


Micronuclei formation

C3H 10T1/2 cell line

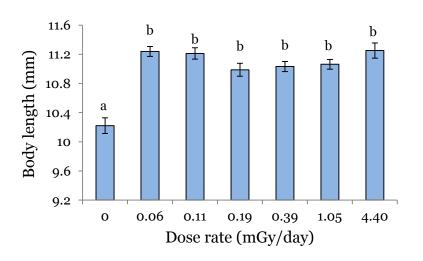
- Cells will be cultured within SNOLAB and the surface control lab
- Glove box incubators enable matching conditions by controlling air, temperature and pressure
- Cells will be cultured for multiple passages and at periodic intervals tested for:
 - Spontaneous transformation frequency
 - Background levels of DNA DSBs and micronuclei
- The dose-response for induced damage will be examined in low-background adapted cells

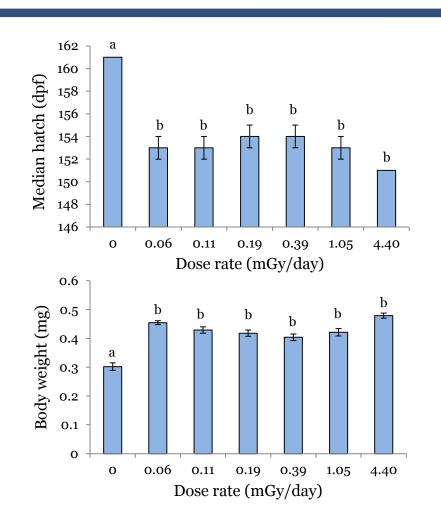


Lake Whitefish

Good model organism for examining radiological effects

- Embryogenesis one of the most sensitive life stages to radiation
- Long development period (> 200 days)
 - Extended low-dose chronic exposures
 - Accurate targeting of specific development stages
- Can accurately quantify growth efficiency
- Easy to raise and low maintenance




Lake Whitefish

Chronic low dose ¹³⁷ Cs gamma ray exposure

- Accelerated development earlier time to median hatch
- Stimulated growth larger body length and weight

Lake Whitefish

- Lake Whitefish embryos will be reared within SNOLAB and the surface control lab
- Embryos will be raised from fertilization to hatch within standard refrigeration units
- At multiple stages, embryos will be analyzed for
 - Mortality
 - Development rate
 - Size
 - Growth efficiency
- The response to acute thermal or chemical stress will be examined in lowbackground adapted embryos

