Many-body mobility edges revealed by convolutional neural networks
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Figure from Falk et al., Phys. Rev. Res. 3, 033291 (2021)

Recent applications of ML in CMP

Supervised/unsupervised learning (i.e. learning from big data sets)
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Figure from Choi et al., Science 352, 1547 (2016)

Many-body localization

MBL = localization of many-body wavefunctions in Fock space
-> breaks eigenstate thermalization hypothesis (ETH) -> quantum memory?
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Machine learning for MBL

It is hard to study the ETH-MBL phase transition...

e Computationally expensive
o Degrees of freedom grow exponentially with system size
o Conventional methods require multiple system sizes
e Strong finite-size effect at the transition -> No consensus on the scaling theory

Supervised learning presents an alternative approach to study the ETH-MBL phase transition.
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Supervised learning: Prepare training data

Our systems: Repulsive, spinless fermions on 1D and 2D lattices with random on-site potentials
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Neural network
architecture

Deep NN =
Layers of linear maps

f(v) =Av+>b

and nonlinear activation
functions

ReLU(x) = max(0, x)
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Figure from Wales, Annu. Rev. Phys. Chem. 69(1), 401 (2018)

Supervised learning: Training

Training in supervised learning = optimize the neural-network parameters (weights and
biases) through gradient descent to minimize the loss function

Loss = —(ylog(P) + (1 —y)log(l — P))
|

label prediction Vo, &=
PR I
[ 1\
It's not easy — think of finding the ground state j. Sop

of a spin glass system through gradient descent.

Successful training requires careful tuning of hyperparameters (learning rate, # neurons, etc).



Result: Energy-resolved phase diagrams

At small and large W, our trained CNNs correctly classify over 99.95% of the wavefunctions.
-> Use CNNs predictions in the intermediate region to generate phase diagrams
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Conclusion

Using labelled data, we trained CNNs to
classify many-body wavefunctions as
delocalized (ETH) or localized (MBL).
Using CNN’s predictions, we generated
phase diagrams of finite-sized 1D and 2D
disordered many-body systems.

To extrapolate to the thermodynamic
limit, we need to consider more system
sizes and model the scaling behavior,
providing another angle to characterize

the elusive MBL transition.
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