
Establishing evidence for the Higgs 
boson dimuon decay using the ATLAS 
detector
Bryce Norman 
CAP Congress – 2024



2

• The Large Hadron Collider (LHC) is the world’s largest particle 
collider
• Protons accelerated around 27 km ring and collided at centre-of-mass 

energy of 13.6 TeV
• ATLAS is the largest general-purpose detector on the LHC

• Helped discover the Higgs boson in 2012
• Cylindrical detector consisting of many subsystems wrapped in layers

• ATLAS is currently collecting data during LHC Run 3

The LHC and ATLAS
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• The Higgs boson was 
discovered in 2012 by 
ATLAS and CMS
• Interactions with the Higgs 

field give the fundamental 
particles in the Standard 
Model mass

• A particle’s mass is 
proportional to its coupling 
with the Higgs boson

• We have only observed 
(>5σ significance) the 
Higgs boson interacting 
with very massive 
Standard Model particles
• W and Z bosons, top and 

bottom quarks, 𝜏 lepton

The Higgs Boson

https://arxiv.org/pdf/2207.00092

https://arxiv.org/pdf/2207.00092


• Want to measure a Higgs coupling to a second-generation 
particle at a much lower, untested mass scale
• The Higgs to dimuon decay provides the best opportunity
• Due to the small muon mass, this is a very rare process, and a Higgs 

boson will only decay to two muons 0.022% of the time

• Previous ATLAS result for Higgs to dimuon decay observed 
2σ significance from full run-2 dataset (2015-2018 data)
• Very low signal-to-background ratio due to low branching ratio
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H→ μμ

https://arxiv.org/pdf/2007.07830

https://arxiv.org/pdf/2007.07830
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• Very challenging to 
measure H→ μμ
• Need to improve analysis 

to establish evidence 
(3σ significance)

• Possible improvements 
include:
• Improved Final State 

Radiation (FSR) recovery
• Implement deep learning

• Density reweighting of 
MC to better model 
background processes

• Splitting data into 
optimized categories

• Increase statistics with 
data taken during LHC 
Run-3

Establishing Evidence for H→ μμ

Dimuon invariant mass spectrum for 2022 
ATLAS data and Monte Carlo (MC) simulations. 
H→ μμ signal is scaled by x100.

Blinded
Region
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• After the Higgs boson decays to two “Born” muons, one or both 
may emit a Final State Radiation (FSR) photon
• If we only reconstruct the Higgs candidate using the “bare” muons after 

FSR emission, we are missing the energy carried away by the photon
• We want to recover this FSR and add it to our muons (“dressed” muon 

includes FSR photon) before reconstructing Higgs candidate

FSR Recovery

Dimuon invariant mass distribution of truth-level particles 
(what MC generator produces) after correcting for FSR. A 
lower tail persists in spectrum due to Dalitz decay

FSR photons can carry significant fraction of 
Born lepton energy. 
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• FSR recovery was performed during run-2 ATLAS analysis
• FSR candidates were selected based on pT, angle from muon (∆R) 

and energy deposited by candidate in EM calorimeter
• If we add in the truth FSR correction in MC we see that there is room 

for improvement
• Idea: Try phase space dependent cuts (pT and η of FSR) and include 

new parameters such as predefined identification working points (WP)

FSR Recovery Improvements

We want to move from the uncorrected mass (black) 
to the best possible correction (blue). Red shows 
improvement using run-2 FSR correction.

Photon and electron candidates have predefined 
ATLAS IDs. Candidates with tighter WPs are more 
likely to match a truth FSR candidate from a muon
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• Improved cuts were found that get FSR recovery closer to the 
truth correction
• It is possible to achieve a lower fake rate and higher efficiency than 

previous run-2 correction in signal events
• New method moves 1.44% more signal events to 120-130 GeV window
• Results are based on run-2 MC, need to investigate for run-3
• Need to investigate impact of cuts on background

FSR Recovery Improvements

Truth FSR 𝑝! Run-2 Cuts
Fake rate / 
Efficiency

“V0” Cuts
Fake rate / 
Efficiency

“V1” Cuts
Fake rate / 
Efficiency

3.0-7.5 GeV 44.92% / 
66.66%

34.18% / 
55.03%

37.55% / 
59.66%

7.5-30.0 GeV 15.06% / 
92.80%

11.25% / 
92.73%

14.38% / 
95.56%

30.0-125.0 GeV 6.20% / 
85.50%

4.77% / 
95.55%

5.69% / 
95.67%

Green is invariant mass with new “V0” FSR correction 
cuts. Plot only includes events which have truth 
collinear (∆R<0.2) FSR with pT > 0.5 GeV.
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• Data events that pass selection for the analysis are split into 
mutually exclusive categories for analysis
• Categories are based on the properties and kinematics of the events 

measured by the ATLAS detector
• Some of these categories will have better signal-to-background ratios
• By extracting the Higgs signal from these categories separately we will 

see a large increase in the overall statistical significance
• Run-2 categories were defined based on different Higgs bosons 

production modes (E.g., gluon-gluon fusion, vector boson fusion)
• If we can improve categorization it would lead to an increase in 

significance

Event Categorization

Vector Boson Fusion (VBF) Gluon-Gluon Fusion (ggF)
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• What if we use machine learning to select optimal categories?
• Variables from each event will be provided to a neural network (NN)
• Want to use variables with separation between signal and background
• Modern deep NNs are very powerful and should be able to 

differentiate between Higgs signal events and background events
• NN will develop a classifier which can be used to determine if data 

events are “signal-like” or “background-like”

Using NN to Determine Categories
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• The dimuon invariant mass is an important variable that we 
want to use to in our final fit to extract the Higgs signal
• We ideally want a smooth, flat background the we can model and 

subtract
• Problem: The NN could learn the Higgs mass and shape the 

background to look like a Higgs peak in mµµ
• Special care needs to be taken to make sure the NN doesn’t shape a 

bump around the expected Higgs mass

Using NN to Determine Categories

NN shapes 
background
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• Problem: We do not want the output of the NN network 
classifier to be correlated with the dimuon invariant mass (mµµ)
• Solution: Add an additional term to the loss function of the NN 

which penalizes it for being correlated with mµµ
• Loss function is a measure of how well the NN models the training data 
• The NN will aim to minimize this loss during training

• Want to use a metric that can capture non-linear dependence 
between distributions
• Use the distance correlation metric (DisCo)

Distance Correlation (DisCo)
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• Let’s read in a sample signal and background dataset
• VBF H→ μμ signal MC
• Drell-Yan Z→ μμ background MC (main background process)
• Give the NN the kinematics of the muons and jets for training

• Train one NN with a common loss function (binary cross 
entropy) and a second NN with an additional DisCo term
• Want to compare the performance of the two NNs and their correlation 

with the dimuon invariant mass

Training the NN

Mass appears to have good discriminating power. 
Background has mean around Z boson mass, signal 
has mean around Higgs mass
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• NN with DisCo performs worse but is less correlated with mµµ
• Receiver operating characteristic (ROC) curve shows the performance 

of the NN at different thresholds
• NN using DisCo is penalized for any correlation with mµµ, so it 

performs worse (which is expected)
• Both NNs have highest correlation with jet momentum
• NN using DisCo has less correlation with mµµ (DisCo is working!)

Results

Binary Cross 
Entropy

Binary Cross 
Entropy + DisCo

DisCo(pTµ1, NN output) 0.0256 0.0547

DisCo(pTµ2, NN output) 0.0769 0.0737

DisCo(pTj1, NN output) 0.3220 0.3462

DisCo(pTj2, NN output) 0.2813 0.4154

DisCo(mµµ,, NN output) 0.1570 0.0718

ROC curve shows NN performance. A 
perfect classifier would have true positive 
rate of 1 and false positive rate of 0



15

• The Higgs to dimuon decay provides the best opportunity to 
measure a Higgs coupling to a second-generation fermion
• Due to the small branching ratio of H→ μμ, this is a very 

difficult process to measure
• Improvements in analysis and more statistics are required to 

establish evidence for this process with the ATLAS detector
• FSR recovery improvements could move more Higgs signal 

events into our signal window, increasing the signal-to-
background ratio
• Optimized categories could result in increased statistical 

significance of this measurement
• NNs can be used to develop categories
• DisCo can be used to prevent the NN from shaping the background

Conclusion



Backup 
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• The amount of loss contributed by the correlation between the 
NN output and mµµ is controlled by a hyperparameter lambda

• What happens when we vary this hyperparameter?
• As we increase lambda, correlation with mµµ decreases
• As we increase lambda the performance of the NN also decreases
• Note that output of NN can vary between trainings, findings are still 

very preliminary

Effect of Hyperparameter

Area under ROC curve (AUC) is a 
measure of NN performance. A perfect 
classifier would have AUC=1.0


