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The Large Hadron Collider

SppS discovered
W& Zin 1980’s

LHC built to find
Higgs (+ more)

{Hustration Philippe Mouche

Discovering massive particles requires high energy & high luminosity accelerators
\V

= many Interesting collisions
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The ATLAS Detector

Observing energetic particles require large & highly granular detectors

@(100 million) channels — 1 petabyte / s
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The Standard Model still doesn’t explain...

Dark Matter Gravity
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Barely no force unification?
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energy =
3 particle generations

Unexplainably small Higgs mass?

* Answers & hints to these questions may be found at the LHC - at the energy frontier

e Signatures will be rare, hard to reconstruct, & hidden among immense Standard Model backgrounds
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| HC Schedule

2009-2012 2015-2018 2022-2025 2029~2040

—_— —_—p —_—p
2X energy triple dataset 20x data!

88 _
. coa e
1 square = 30 fb-1 _j
collecting more

as we speak

~4000 fb-"1 of data to access rare unseen processes, such as Higgs self-coupling!




Unparalleled challenges

e 5X as many simultaneous collisions requires new detector technologies to untangle & understand
* The very particles we seek to observe also cause damaging radiation
 HL-LHC ATLAS must withstand up to 1.7 Grad!
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HL-LHC Upgrades

New detector technologies will give access « New Inner Tracker - Full silicon
to currently unattainable physics! replacement with Pixel & Strip tech
Canadian institutes driving major * High Granularity Timing Detector
contributions to these efforts for 30 ps resolution
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e New Inner Tracker - Full silicon
replacement with Pixel & Strip tech

* High Granularity Timing Detector
for 30 ps resolution




HL-LHC Upgrades

New detector technologies will give access  New Inner Tracker - Full silicon
to currently unattainable physics! replacement with Pixel & Strip tech
Canadian institutes driving major * High Granularity Timing Detector
contributions to these efforts for 30 ps resolution

* Upgraded Muon Spectrometer for
quicker & precise muon tracking
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Unifying Detector Data Streams

e Standardizing connection between on-detector electronics & off-detector commodity computing

* GBTXx: on-detector rad-hard ASIC for aggregating data streams

* FELIX: off-detector data router (Xilinx Ultrascale FPGA) interfacing subdetectors with ATLAS readout

& timing / trigger / control (TTC) systems
* Reduces complexity & costs from custom components, de-duplicates design+maintenance

e Scalable! Will ultimately route 4.6 TB/s through ~30,000 links

* Adopted beyond ATLAS (ProtoDUNE, sPHENIX, NAG2, ...)

FELIX being utilized now
for select Run 3 detectors

FELIX routing

Current data routing
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https://cds.cern.ch/record/2814356/files/document.pdf
https://cds.cern.ch/record/2814356/files/document.pdf

Upgraded Muon Detector

 New Small Wheel is first new detector designed for HL-LHC rates

e Two innovative gaseous detectors for fast & precise muon tracking & triggering

» Installed in 2021 before Run 3, public followed videos of the journey \ Small-strip Thin Gap Chambers
4 made in Canada!



https://www.youtube.com/watch?v=T9hgntb63hE
https://www.youtube.com/watch?v=uLJ60sPjOHg
https://www.youtube.com/watch?v=JIBUgP1YfBA
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub

Readout becomes stuck due to long latencies
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Upgraded Muon Detector

 New Small Wheel is first new detector designed for HL-LHC rates

e Two innovative gaseous detectors for fast & precise muon tracking & triggering

» Installed in 2021 before Run 3, public followed videos of the journey

* Most data links yet = essential feedback on GBTx/FELIX in saturated conditions

e Rare issues found & solved, new performance optimizations investigated & deployed

= Smoother start to HL-LHC!

Efficiency recovered with software optimizations
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https://indico.jlab.org/event/459/papers/11362/files/424-ATL-DAQ-PROC-2023-008.pdf
https://indico.jlab.org/event/459/papers/11362/files/424-ATL-DAQ-PROC-2023-008.pdf
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub
https://www.sciencedirect.com/science/article/pii/S2405601415006719?via=ihub

Calorimeter upgrades

High-energy charged particles shower
in dense passive material (lead)

« Sampling calorimeters use rad-hard materials (liquid argon, plastic scintillator) /V\

* No full replacement necessary for HL-LHC

* Current electronics bandwidth limited, cannot send all info off-detector

* Must sum into granular towers for trigger decision

Showering particles ionize LA,
charge drifts to readout electrodes

ry 4 ¢ i 7/

Coarse trigger readout can remove relevant details from event




Calorimeter upgrades

High-energy charged particles shower
in dense passive material (lead)

« Sampling calorimeters use rad-hard materials (liquid argon, plastic scintillator) /\N\/\
* No full replacement necessary for HL-LHC ~

* Current electronics bandwidth limited, cannot send all info off-detector

* Must sum into granular towers for trigger decision

« Electronics redesign to allow for full granularity, triggerless 40 MHz readout

Showering particles ionize LA,
charge drifts to readout electrodes

F 4 /

HL-LHC full readout will give clearer picture!




L Ar Upgrade Integration

Schematic of LAr Phase-2 upgrade

LAr Calorimeter Cells

Calibration Board

* Huge project with many pieces
independently developed worldwide

e Canada develops several components & leads
integration efforts (prove they work together)
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L Ar Upgrade Integration

Schematic of LAr Phase-2 upgrade
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LAr Calorimeter Cells

 Huge project with many pieces
independently developed worldwide

e Canada develops several components & leads
integration efforts (prove they work together)

« Have achieved system configuration
& demonstrated data flow

from front-end boards (FEB2) — to LAr Signal Processor (LASP) —» and out to




L Ar Upgrade Integration
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L Ar Upgrade Integration

» LAr Signal Processor (LASP): Off-detector FPGA boards (2 Intel Agilex)

* Will handle 250 Tbps of data from 36k optical fibers

e Clean signals of pileup contamination, computes cell energy & timing

* Exploring Al integrations in FPGAs for advanced signal filtering

278x off detector
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 CNNs & RNNs to detangle overlapping signals for better signal-vs-background efficiency (80% —95%)
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https://cds.cern.ch/record/2775033
https://cds.cern.ch/record/2775033

New [Tk detector

Moving to all-silicon charged-particle tracker with
cutting-edge technologies for inner Pixel and outer Strip layers
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Canada deeply involved in design & construction of Quter Strip tracker

165 m2 of silicon, split into 60 million channels, read by 300,000 on-detector ASICs
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Zooming In on strip sensors

Moving to all-silicon charged-particle tracker with

cutting-edge technologies for inner Pixel and outer Strip layers
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Canada deeply involved in design & construction of Outer Strip tracker

165 m2 of silicon, split into 60 million channels, read by 300,000 on-detector ASICs
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Zooming In on strip sensors

silicon sensor strips
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Zooming In on strip sensors

silicon sensor strips

Cross-section of silicon sensor strips

metal readouts
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Figure Adapted from M. Krammer

silicon sensor wafer




Strip Sensor

e Semiconductors: doping impurities into silicon creates electric field with no mobile charge carriers

76 pm piteh s.o Al n-type
H A
T readout strip + -
+_ Si i
Depth n"-doped Q EF 5
304 um .@. p* @ >
l \N .7 + C-
p-doped bulk S| :
+ —
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Figure Adapted from M. Krammer




Strip Sensor

e Semiconductors: doping impurities into silicon creates electric field with no mobile charge carriers

e Adapted into sensors: ionizing particles will free electrons & holes, drift to readout

Reverse bias voltage

76 pm piteh Si0, Al n-type
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+ + o+ - - -

é} readout strip + +  +p o= = -
1 + F

n"-doped : >

Depth >
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+ + 4 - - -

p-doped bulk

V>0 Al

Figure Adapted from M. Krammer

n+-in-p technologies only recently possible thanks to work of
RD50 collaboration that includes Canada!




Sensor QC & QA

-V curves identifying sensor breakdown
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« Quality Assurance: Destructive tests of a few sensors
per-batch to ensure robust operation while irradiated
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https://www.sciencedirect.com/science/article/abs/pii/S0168900220308196
https://cds.cern.ch/record/2846511/files/ATL-ITK-PROC-2023-002.pdf

Sensor Modeling: Electric Field

Conduction - * Simulate sensor behavior using industry tool TCAD
T * |nject traps into Silicon bandgap to model radiation damage
I
Silicon ||| woan
112 eV ——

+0.53 eV

l

Valence




Sensor Modeling: Electric Field

Conduction — * Simulate sensor behavior using industry tool TCAD
T * |nject traps into Silicon bandgap to model radiation damage
h!
Silicon ) "oe Visualize Electric Field & more
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ensor Modeling: Electric Field

Conduction — * Simulate sensor behavior using industry tool TCAD
T * |nject traps into Silicon bandgap to model radiation damage
h!
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Sensor Modeling: Electric Field

Conduction — * Simulate sensor behavior using industry tool TCAD
T * |nject traps into Silicon bandgap to model radiation damage
Silicon i ) woan! Visualize Electric Field & more
e +0.53 eV Compare & tune performance against irradiated test devices
Valelnce Will lead to new models of radiation damage

for n+-in-p sensor technologies!
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https://indico.cern.ch/event/1334364/contributions/5672062/

Readout ASICs

Three ASIC designs to manage & aggregate data

oS ATLAS Binary Chip (ABC)
Sensor <250 S Signal amplification, digitization, compression
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Readout ASICs

Three ASIC designs to manage & aggregate data

oS ATLAS Binary Chip (ABC)
Sensor <250 S Signal amplification, digitization, compression
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) T e Hybrid Controller Chip (HCC)
) Manage commands & data requests, serialize @ 640 Mbps
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Figure Adapted from M. Krammer




Readout ASICsS

Three ASIC designs to manage & aggregate data

DS ATLAS Binary Chip (ABC)
Sensor <250 S Signal amplification, digitization, compression

s |

x11 ABCs
SiO, Al
l
e ? e Hybrid Controller Chip (HCC)
) Manage commands & data requests, serialize @ 640 Mbps
é readout strip g

é? ? n*-doped :
? (I)é | off detector
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Autonomous Monitoring And Control (AMAC)
Automatic protections (voltages, currents, temperatures)

e Al TE 7

Figure Adapted from M. Krammer
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Why Is verification important”

Recent example: A self-driving car meets a stop sign

The Dawn Project

Verification ensures working logic with minimal expensive design & testing cycles




Verification strategy

Usually done by big teams of experienced engineers ... Typical Intel design team

- Industry tools are complex & proprietary
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Verification strategy

Usually done by big teams of experienced engineers ... Typical Intel design team

- Industry tools are complex & proprietary
Physicists can bring to the table:

- Physics drives technical requirements
- Have operational LHC experience
- Data analysis & detector expertise

Can postdocs and students fill the verification role?

Ben Rosser
(now UChicago)




Verification strategy

Usually done by big teams of experienced engineers ... Typical Intel design team

- Industry tools are complex & proprietary
Physicists can bring to the table:

- Physics drives technical requirements
- Have operational LHC experience
- Data analysis & detector expertise

Can postdocs and students fill the verification role?

Ben Rosser
(now UChicago)

‘ocotb

Adopted open-source python approach w/ cocotb (coroutine cosimulation testbench)

They can if you speak their language!

* Immediate impact by physicists, including students
» Realistic LHC dataflow with simulated ASIC interconnectivity (up to 26 ASICs at once)

» Reach into the ASICs for data analysis & visualization




A lookK Inside the logic

Simulate all possible scenarios, even unexpected noise bursts
hot spot leading to larger data packets than reasonably expected

. D . . . 'a' _I I I | I I I I | I I I I | I I I I I I I I I I I I I_
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3 u ]
* EXxcess triggers discarded, no system lockup § 100 .-~‘: -
* After burst ends, natural recovery % 802— ' E
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https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01029
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01029
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01029

A lookK Inside the logic

Simulate all possible scenarios, even unexpected noise bursts
hot spot leading to larger data packets than reasonably expected

* During noise burst:
* | arge data packets take longer to process

* Internal buffer backlog grows with
unprocessed requests

* Excess triggers discarded, no system lockup
* After burst ends, natural recovery

e Slowly over 1000’s of data requests!
Insight led to operational improvements

* Knowledge from simulations informed
testing procedures on real ASICs

e >400,000 chips now produced & tested
thanks to industry partnerships (DA-Integrated)

Wafer of ~1000 ASICs as featured on instagram

42


https://www.instagram.com/atlasexperiment/p/C4s6Xi-MRqh/
https://indico.cern.ch/event/1191895/contributions/5325064/attachments/2668580/4625071/BryceNorman_CAP_ABCStarProbing.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02026
https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02026
https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02026

Design Test. Build it! 43

Construction sites finalizing qualification for building components—=modules, and modules—staves
« Assembly to begin at CERN this year towards installation in 2027/2028
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Tackling unexpected challenges

» |Issues will emerge aggregating individual pieces into larger systems

» Last year L uise Poley discussed “cold noise” - noise spikes when operating modules cold

» Major progress since in understanding link between 2 MHz capacitor vibrations & sensor signals

From last year: vibrations travel across sensor and
couple to outputs, inducing noise in some channels



https://indico.cern.ch/event/1191895/contributions/5371166/attachments/2669767/4627660/LPoley%20-%20ATLAS%20Upgrade%20Canada.pdf

Tackling unexpected challenges

Issues will emerge aggregating individual pieces into larger systems

Last year Luise Poley discussed “cold noise” - noise spikes when operating modules cold

Major progress since in understanding link between 2 MHz capacitor vibrations & sensor signals

* Leading theory: Stress in glue adhesion — vibrating glue contact — variable surface charge
» Mitigated with new glue, ongoing exploration of anchoring glue edges

» Tackling additional issues as they arise, such as sporadic sensor cracking due to CTE mismatches

Electronics

| I
Glue Glue applied

Sensor

iIn warm conditions

1600

W Mismatch in coefficient

Glue of thermal expansion (CTE)

induces stress & edge peeling
Sensor

From last year: vibrations travel across sensor and
couple to outputs, inducing noise in some channels 45



https://indico.cern.ch/event/1191895/contributions/5371166/attachments/2669767/4627660/LPoley%20-%20ATLAS%20Upgrade%20Canada.pdf

Rethinking Particle Reconstruction

Adopting open-source solutions to do more with less, such as for track reconstruction (ACTS)

Porting CPU-intensive tasks to GPUs for tracking (Traccc) and calorimeter clustering (TopoAutomaton)

Integrating machine-learning methods for better particle reconstruction (Graph Neural Networks for tracking)

Industry partnerships to advance machine learning, quantum algorithms, high-perf computing (NextGen Trigger project)

Utilizing new dimensions of information in our data (30 ps timing resolution of HGTD)

ATLAS Simulation Preliminary

oo VS =14Tev, tt, (1)=200
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Rethinking Particle Reconstruction

Adopting open-source solutions to do more with less, such as for track reconstruction (ACTS)

Porting CPU-intensive tasks to GPUs for tracking (Traccc) and calorimeter clustering (TopoAutomaton)

Integrating machine-learning methods for better particle reconstruction (Graph Neural Networks for tracking)

Industry partnerships to advance machine learning, quantum algorithms, high-perf computing (NextGen Trigger project)

Utilizing new dimensions of information in our data (30 ps timing resolution of HGTD)
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Rethinking Particle Reconstruction

Adopting open-source solutions to do more with less, such as for track reconstruction (ACTS)

Porting CPU-intensive tasks to GPUs for tracking (Traccc) and calorimeter clustering (TopoAutomaton)

Integrating machine-learning methods for better particle reconstruction (Graph Neural Networks for tracking)

Industry partnerships to advance machine learning, quantum algorithms, high-perf computing (NextGen Trigger project)

Utilizing new dimensions of information in our data (30 ps timing resolution of HGTD)
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Canada building the software &
algorithms to utilize new timing tech!
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Conclusion

e Significant progress on ATLAS detector upgrades, will enable unparalleled physics program at HL-LHC
e Unifying and accelerating streaming of data off-detector
 New Inner Tracker with cutting-edge silicon technologies & robust readout ASICs for high radiation

e Updating particle reconstruction with new detectors and modern technologies

Canadian institutes driving all these efforts!
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Sensor Modeling: Charge Propagation

—=0.15—

* Adopting open-source AllPix2 for simulating
charge collection efficiency

 Critical for building an accurate model of how radiation
damage will effect the tracker performance

e Parameterizing results into look-up tables for a faster
simulation of many trillions of particles
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https://allpix-squared.docs.cern.ch/

