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Seng (2022) and 

references therein.

Vud element of CKM matrix
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Beta decay in the Standard Model

𝐺𝐹 ≡ Fermi coupling constant 

determined from muon 𝛽 decay

[2] Zyla et al. (2020)
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Vud element of CKM matrix

▪ Precise Vud from superallowed Fermi transitions

[2] Zyla et al. (2020)

‒ hadronic matrix elements modified by nuclear environment

‒ Fermi matrix element renormalized by isospin non-conserving forces

𝐺𝐹 ≡ Fermi coupling constant 

determined from muon 𝛽 decay
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Historical treatment

[3] Seng et al. (2018)

[4] Gorchtein et al. (2019)

[5] Hardy et al. (2020)

Since 2018

▪ Data-driven dispersion integral approach for Δ𝑅
𝑉  [3-4] which 

reduced radiative correction uncertainty by factor of ~ 2

▪ Ongoing nuclear theory [ this work ] and lattice QCD calculations 
of electroweak box diagrams

Pre-2018 (for almost 30 years)

▪ δNS from shell model and approximate single-nucleon currents

▪ δC from shell model with Woods-Saxon potential
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[5] Hardy et al. (2020)

NCSM
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[5] Hardy et al. (2020)

NCSM
CC
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[5] Hardy et al. (2020)

NCSM
CC

VS-IMSRG
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1max += NN

Anti-symmetrized products of 

many-body HO states

No-core shell model (NCSM)

▪ Ab initio approach to solving many-body Schrödinger equation

▪ Sole input are nuclear interactions from chiral effective field theory

[6] Entem et al. (2017)

[7] Somà et al. (2020)

–  NN-N4LO(500) [6]

–  3N(lnl)-N2LO(650) [7]
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1max += NN

Standard Model

Barrett et al. (2013)

Haydock (1974)

𝐸

▪ Ultimate goal – consistent chiral 
expansion for electroweak currents

▪ For now – leading multipole expansion

Haxton et al. (2007)

Seng et al. (2023)

Entem et al. (2017)

Somà et al. (2020)

Chiral Effective Field Theory

Weinberg (1991)

Epelbaum (2009)

𝑆𝑈 3 𝐶 𝑆𝑈 2 𝐿 × 𝑈 1 𝑌
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

Leptonic current
NME of charged 

weak current

[8] Seng et al. (2023)
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

[8] Seng et al. (2023)

Leptonic current
NME of charged 

weak current
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

[8] Seng et al. (2023)

Leptonic current
NME of charged 

weak current
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Lanczos strength method

▪ Reformulate resolvent operator as inhomogeneous Schrödinger equation

▪ Resolvent amplitudes reconstructed 
via Lanczos basis

▪ Avoids (total) brute force calculation 
of intermediate states

[9] Haydock (1974)

[10] Dagotto (1994)
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No resolution for nuclear 𝛾𝑊-box above pion threshold, meaning 𝛿𝑁𝑆 
extracted with only free nucleon Born contribution
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Nuclear poles

▪ Traverse infinite number of poles in 
discrete and continuous nuclear spectrum

▪ Natural solution is Wick rotation

K
.C

. 
G

re
e

n
e
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Wick rotation
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Wick rotation and electron energy expansion

Wick rotated box diagram combined with electron 
propagator residue contribution regular at  𝐸𝑒 = 0

𝑇3 residue contribution singular



23



24



25



26▪ Goal: consistent nuclear theory corrections to Fermi transitions

▪ Larger basis NCSM calculations of δNS complete

▪ First consistent NCSM calculation, seems that residue is dominant feature

▪ NCSMC calculations for δC ongoing with Mack Atkinson

Outlook

▪ Tackle large number of many-body calculations with realistic 𝑁𝑚𝑎𝑥

– seperate inhomogeneous Schrödinger equation at each Ԧ𝑞

– 𝑁|𝑞| × 𝑁𝑡𝑒𝑟𝑚𝑠 × 𝐽𝑚𝑎𝑥 = 50 × 4 × 3 = 600 many body calculations

▪ Improve limited uncertainty quantification

▪ Heavier transitions, e.g., 14O → 14N
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www.triumf.ca

Thank you
Merci
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Lanczos strength method

▪ Reformulate resolvent operator as inhomogeneous Schrödinger equation

Access dynamical properties!

[9] Haydock (1974)

[10] Dagotto (1994)
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multipole 

expansion and 𝛿𝑁𝑆
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

[6] Seng et al. (2023)

Leptonic current
NME of charged 

weak current
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Nonrelativistic Compton amplitude

[7] Haxton et al. (2007)

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators
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+ Translation 

invariance

Nonrelativistic Compton amplitude

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

[7] Haxton et al. (2007)
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Nonrelativistic Compton amplitude
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Nonrelativistic Compton amplitude

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

▪ General multipole expansion of currents

[7] Haxton et al. (2007)



36

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

▪ General multipole expansion of currents

Nonrelativistic Compton amplitude

Lanczos continued fraction 

method to compute nuclear 

Green’s functions [13-14]

[7] Haxton et al. (2007)

[13] Hao et al. (2020)

[14] Froese et al. (2021)



37

Electron energy expansion



38

Multipole expansion of amplitude

[7] Walecka (2004)
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Multipole expansion of amplitude
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Nuclear matrix elements of multipole operators
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Nuclei Nucleons Pions

Symmetry tests of 𝑇3 amplitude

▪ Time reversal symmetry with exact isospin gives NME constraint

▪ Previously assumed nuclear 𝑇3 matched nucleonic system

[6] Seng et al. (2023)
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