Teaching Physics Before and After 2020

Happy National Indigenous Peoples Day!
Happy Summer Solstice!

15 hours and 45 minutes of daylight in Fredericton today!

I'm happy I'm **not** at the bottom of the ocean right now...

- The wreck of the Titanic is 3800 m below the surface of the ocean.
- Every square metre of surface area on a submarine at the bottom must push outward with enough force to support the weight of 3800 cubic metres of water above it, which has a mass of 3,800,000 kg!
- That pressure force is 37 million Newtons per square meter, or the weight of about three cars per square inch.
- Also, even in the clearest ocean waters, only about 1% of the sunlight at the surface reaches down to a depth of 150 m, and it is pitch dark below about 1000 m.

Today's Outline

- I teach the first semester of our algebra-based first-year physics course for non-physics science majors (PHY131).
- We have about 1000 students in the fall, when I teach Newtonian Mechanics. Ania Harlick takes over with PHY132 in January.
- I have taught this course 14 times this fall will be #15!
- I'll talk about my course and some of my teaching techniques that might be useful to you.
- I'll compare some teaching practices pre and post Covid, and discuss what we can learn from this big disruption.

Convocation Hall, U of T St.George Campus

Behind me is a 50-foot screen which shows powerpoint and what I write out with a fancy tablet.

Students also meet in groups of 36 weekly for combined tutorial and lab activities, called "Practicals".

Every "lecture" has three assignments

- Pre-class material and quiz
 - A short 5 minute video
 - Reading pages from the textbook
 - Easy "Facts" Quiz done Online, based on video
 - Survey question with typed response: what are some of your questions about the reading?
- In-class discussion questions
 - About one per 10-15 minutes for marks!
- Post-class Problem set

COVID-19

- In fall 2020 and all of 2021, University of Toronto ran all large first-year courses completely online: online lectures, Practicals, term tests, labs and final exams.
- Practicals involved students purchasing a lab-kit and performing experiments in their homes with a camera on and instructor support. Carolyn Sealfon lead the work on developing these activities.
- Synchronous Classes were held on zoom, with students often opting to watch the recordings asynchronously.

What have we kept post-COVID?

- We did **not** keep the at-home Practical option. Miranda Schmidt at McMaster has kept this for some activities.
- We have kept an Asynchronous Lecture Section
- Pre-2020 we had multiple in-person sections with some content posted online.
- Now there is only one in-person section.
- There is a videographer filming the lecture, the powerpoint slides are screen-captured and videos are mixed in post; silence is deleted.
- The ASYNC section (about 200 students) have access to the lecture videos 3 or 4 hours after class. In-class polling is repeated as homework questions.

The Asynchronous Lecture Section

- ASYNC sections in other courses allow us to "overbook" our rooms.
- For example, if your room holds 100 but 115 students want to take the course, at least 15 students can sign up for the ASYNC lecture section.
- Once the course starts, you can let students know the two sections are actually treated the same way.
- Disadvantage: Is this encouraging students to stay home and not attend class?

What else changed Post 2020?

- Office Hours can now be on zoom or hybrid.
- Advantage: I am more accessible, especially to off-campus students.

Disadvantages:

- I am more accessible, especially to off-campus students.
- It's more difficult to communicate through zoom
- I cannot see their work
- It's more difficult to write on a "whiteboard"
- I cannot read body language
- Sometimes there are audio problems.
- In hybrid mode the zoom students can feel a bit left out.

The New Normal: e-Textbooks

- Since COVID the U of T bookstore no longer stocks paper textbooks for most large courses.
- Students purchase a subscription to the e-text, sometimes with online homework options.
- Simulations like PhET, short videos / animations, and "check your understanding" quizzes can be integrated seamlessly into an e-text.
- Joanne O'Meara has recently done this with 2nd year Electricity and Magnetism, published by Top Hat.
- I have a breadth Physics of Music textbook I am preparing for January that will follow this format.

In-Class Discussion Questions

- Before 2006, we used hands, or coloured cards.
- I want to try this out today do you still have your CAP bidding paddle?
- From 2006-2016 we used i-clicker remotes.
- Since 2017 we have used various smartphone / laptop apps, and are currently using **Top Hat** dynamic courseware.
- Are you ready?

Think
Pair
Share

Two balls are launched along a pair of tracks with equal velocities, as shown. Both balls reach the end of the track. *Predict*: Which ball will reach the end of the track first?

A 5%

B 30%

C: They will reach the end of the track at the same time. 30%

Catchbox Microphone

- Catch and talk into the black dome on the top, and that way everyone will be able to hear you.
- Also, the Microsoft Teams participants will be able to hear you.
- Catchbox has "Automute" electronics which mutes the microphone when the box is being thrown.

Justify
Your
Prediction

Two balls are launched along a pair of tracks with equal velocities, as shown. Both balls reach the end of the track.

Predict: Which ball will reach the end of the track first?

A

B

C: They will reach the end of the track at the same time.

Two balls were launched along a pair of tracks with equal velocities, as shown. Both balls reached the end of the track. **Observe**: Which ball reached the end of the track first?

A

B

C: They will reach the end of the track at the same time.

Two balls were launched along a pair of tracks with equal velocities, as shown. Both balls reached the end of the track. **Observe**: Which ball reached the end of the track first?

A B

B wins every time and this does **not** depend on the details of the path shape.

C: They will reach the end of the track at the same time.

Why does Ball B win?

- A. Ball B is always traveling faster than ball A, so it reaches the end of the track first.
- B. Ball B travels a shorter distance than ball A.

- C. Balls A and B start and end with the same speed. But while ball B is on the lower part, it is going faster than ball A. Its average speed is greater, so it gets there first.
- D. Ball B travels a longer distance, but is pulled faster by an extra force we cannot know about.
- E. The observation is flawed ball B should not reach the end first.

Why does Ball B win?

- A. Ball B is always traveling faster than ball A, so it reaches the end of the track first.
- B. Ball B travels a shorter distance than ball A.

- C. Balls A and B start and end with the same speed. But while ball B is on the lower part, it is going faster than ball A. Its average speed is greater, so it gets there first.
- D. Ball B travels a longer distance, but is pulled faster by an extra force we cannot know about.
- E. The observation is flawed ball B should not reach the end first.

COVID-19

- During the pandemic, lots of methods were tried to prevent or mitigate student collaboration during these tests.
- Short, frequent, open-book, open-google, timed assessments with maximum question randomization.
- Also the final "assessment", done online, was not weighted as heavily toward the course mark.

Gender differences in test anxiety on high-stakes summative assessments

- Chandralekha Singh at University of Pittsburgh
 Physics has shown that there are gender differences
 in Test Anxiety when taking high stakes assessments,
 which affect student performance.
- They did **not** find gender differences in low-stakes assessment scores.

Alysa Malespina and Chandralekha Singh 2022 *Eur. J. Phys.* 43 035701

Course Marks pre, during and post COVID

PHY131 has 1000 students per year; about 60% women, 39% men, 1% non-binary / other.

	PHY131 Final Course Mark						
				Gender	# of	Course	Final
Fall of	All	Men	Women	Gap	tests	type	value
2018	76	78.1	74.9	3.2	2	in-person	45%
2019	75	75.6	74.5	1.1	2	in-person	35%
2020	84	83.6	84.0	-0.4	5	online	20%
2021	74	73.9	73.6	0.3	3	online	30%
2022	76	77.7	75.1	2.6	2	in-person	40%

Gender Gap pre, during and post COVID

The Force-Concept Inventory (FCI)

- 30 multiple choice questions to test conceptual understanding of mechanics.
- I have 11 consecutive years of giving pre and post FCI to PHY131 students in the fall.

Thank you!

Let's talk more!

DPE/DGEP Session at 1:45pm in Kinesiology Rm.208
And don't miss:

DGEP/DPE Networking Reception 3:45pm in Grad House