2023/06/23

Improving SNOLAB radon assay capability using activated charcoal

Nasim Fatemighomi

CAP Congress, June 2023

Introduction

- ²²²Rn progeny -> Background to low energy neutrino and rare event searches
- Present in SNOLAB ~ 120 mBq/m3 (~ 10 times higher than surface)
- To reduce ²²²Rn: fill external experimental components with clean cover gas such as N₂
 - ²²²Rn concentration in gas can be measured using SNOLAB radon board

SNOLAB Radon board

Consists of couple of radon traps and couple of Lucas cell ports

Used for ²²²Rn material screening

Refurbished for gas assays

Peen regularly used to monitor radon concentration in SNO+ cover gas system and SNOLAB boil-off N₂

Lucas cell ports

SNO technique for radon assay under vacuum

- Vacuum pull transfer
- Primary Trap cooled in Liquid N₂
- Cryopump transfer
- Primary Trap (Bronze wool) heated to 100 C
- Secondary Trap cooled in Liquid N₂

- Volume sharing
- Secondary Trap heated to room temperature

Gas assay technique

- Transfer with carrier gas (1 SL/min)
- Primary Trap cooled in Liquid N₂
- Cryopump transfer
- Primary Trap heated to 100 C
- Secondary Trap cooled in Liquid N₂

- Volume sharing
- Secondary Trap heated to room temperature

Primary trap limitation

- Primary trap is made of Bronze wool
- Assay time is limited as trap is warmed up by the carrier gas for longer assay times
- Operational requirement is to not to go higher than 1 SL/min flow rate because of known low thermal capacity of bronze wool

Primary trap limitation (Efficiency versus assay time)

Primary trap limitation (Efficiency versus assay time)

Target sensitivity

- Current ²²²Rn sensitivity ~ 0.01 mBq/m³ (roughly four order of magnitude smaller than SNOLAB ²²²Rn concentration)
- The goal is to perform at least 10 times better to make experimental goals
- Requires higher flow and longer assay time capability
- The bronze wool need to be replaced with something more porous
- The radioactive background from primary trap needs to be negligible during the assay period.

New trap specification

- Constant efficiency versus different assay time and flow rate
- Radon emanation rate /gram need to be small
- Coconut charcoal is used for trapping radon in noble gases (NIM A.2011.09.051, NIM. A.2018.06.076)
- Need to be able to extract radon atoms that are trapped

Activated charcoal options

²³⁸U concentration

Charcoal	Specific activity (mBq/kg)	Price (USD/kg)	
Calgon OVC 4x8	53.6 ± 1.3	6	
Shirasagi G2x4/6-1	101.0 ± 8.0	27	
Saratech	1.71 ± 0.20	35	K. Pushkin et al., Study of radon
HNO ₃ etched Saratech	0.51 ± 0.09	135	reduction in gases for rare ever
Carboact	0.23 ± 0.19	15,000	search experiments, 2018
Carboact	0.33 ± 0.05	15,000	

• Can we reduce the radon emanation in house?

Cleaning the sample

- Nitric acid washed the charcoal inhouse at SNOLAB
- It was counted by a SNOLAB's Germanium detector

Sample	²³⁸ U from ²²⁶ Ra (mBq/kg)	²³⁸ U from ²³⁴ Th (mBq/kg)	²³² Th (mBq/kg)
Regular Activated Charcoal (Calgon)	465.50 +/- 47.48	<327.12	114.50 +/- 37.57
Nitric Acid Washed Activated Charcoal (30% diluted HNO3)	<33.25	<42.92	99.75 +/- 20.06

Radon emanation results using new SNOLAB's surface board = 3+/-1 mBq/kg

Charcoal test

~ 22 gr of charcoal in a U-tube ~ Background: 0.3 ²²²Rn decay /hour
 Used a radon board on surface to do the measurement

Testing charcoal trap with a can filled with high radon emanating material

- N₂ sweep gas transfer different flow
- Charcoal trap in
- -60°C alcohol slush

- Cryopump transfer
- Primary Trap heated to 150 C
- Secondary Trap cooled in Liquid N₂

- Volume sharing
- Secondary Trap heated to room temperature

Calibration Can Results versus assay time

- Absolute emanation rate of the calibration source need to be finalized
- 25% uncertainty on the measurement was found by repeating 30 min measurement 5 times (errors are correlated)

Calibration Can Results versus flow rate SNotAB

Uncertainty on the measurement was found by repeating each measurement at least three times

Conclusion and future work

- A radon board used for gas assays
- New charcoal trap will allow > 10 times higher volume extraction
 - Allow for higher sensitivity
- Radioactive background is negligible
- Will investigate the 25% systematic uncertainty
 - Trap cooling/baking temperature?
 - Source emanation rate uncertainty?
- This systematic is good enough to be able to use this for gas assays UG
- We also have different charcoal samples from other companies which we plan to test

Back up slides (calibration source)

