

Water Monitoring System for Water Cherenkov Detectors

S. Taghayor, X. Li, A. Konaka, N. Braam, N. Massacret, P. Lu, V. Sharma

21 June 2023

The Large Neutrino Detectors in Japan

Kamiokande

1983~1996

Super-Kamiokande

1996~Present

Size

39m diameter x 42m hight

Water mass (Fiducial mass)

Hyper-Kamiokande

Aiming to start observation in 2027

Cherenkov ring shows:

Particle's momentum

particle type

N YOUG

50000 ton (22500 ton)

50cm diameter / 11146

260000 ton (190000 ton)

68m diameter x 71m hight

(680~1040 ton)

**The waer mass in the tank(inner tank and, upper and bottom outer tank) is 3000 ton

4500 ton*

19m diameter x 16m hight

Photomultiplier Tubes

/pe

50cm diameter / 948

50cm diameter / about 40000

Continuous Water Monitoring

The continuous high-sensitivity optical water monitoring system for:

- □ HyperK
- WCTE in early 2024
- ☐ IWCD experiment in 2026

- Importance of water quality:
 - water transparency
 - long Cherenkov light attenuation length

Drinking water monitoring

UDEAL System

Schematics of Our Detector

- Horizontal water pipe instead of vertical
- The water quality measured relative to ultra-pure water

Mechanical Design

★ To cut costs, SiPMs will take the place of PMTs.

5

Prototype Detector

- ❖ Testing on this prototype, which was constructed by TRIUMF engineers, has already begun.
- ❖ One fixed parabolic mirror and one rotatable mirror. LED board on a 60 mm Linear Translation Stage with Resonant Piezoelectric Motors.

Water Filtration System

- □ ultra-pure (RO)
- □ particle filter (MF,NF)
- ion exchange resins
- UV steriliser (organic)

Water Monitor Light Source

Nicolas Braam from UVic has built two fully populated boards & two partially populated boards, as well as another board with visible LEDs for alignment.

- I. One PMT near the LEDs (the focal point of the first mirror) at the source site, collects reflected photons from the half-mirror.
- II. The other PMT at the reception site detects the focused beam at the focal point of the second mirror.
- Hence, relative transmission is measured.

PRODUCT VARIATIONS

Type No.		-09	-116	-113	-110	-210	-04	-01	-20	Unit
Photocathode ^①		Cs-Te		SBA	UBA		MA		ERMA	_
Spectral	Range	160 to 320	160 to 700	185 to 700	230 to 700		185 to 870	230 to 870	230 to 920	nm
response	Peak	240			40	00			630	nm
Window material		Quartz		UV	Borosilicate		UV	Borosilicate		
And designed managed in the contract of the co										

STATISTICS OF TAXABLE STATISTICS OF TAXABLE

CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 100

Bialkali photocathode

WAVELENGTH (nm)

NOTE: 1) Photocathode materials

SBA: Super bialkali UBA: Ultra bialkali, MA: Multialkali, ERMA: Extended red multialkali

Current Status

Observing how adding water to the pipe affects the image of the light spot on the receiving-end

Bubbles on the inner surface and the quartz windows at two ends of the pipe

Possible solution: degassing the water before entering the pipe or vacuuming the pipe

Optics Study for Alignment

- → An iris after the first mirror to reduce the , beam diameter from 50.8 mm to 10 mm
- → A bright LED on a motorized 3D stage with tape on it to make a point light source
- Screen once put 9 inches after the first mirror, and once put 54 inches away

9 inches

22 20 15 16 10 15 20 25 10 15 20 65 00 65 0

54 inches

Parallel beam within 0.5 mrad

- 0.1 mm displacement of the LED in X and Z directions corresponds to 1 mm displacement of the second image.
- Approximately 0.4 mm displacement of the LED in the y direction(axis of the parabolic mirror) changes the second image's size by 1 mm.
- Achieved this alignment on the prototype as well.

Moving the LED

- ★ Goal: Study the effect of small displacements of the LED on the beam image
- The motorized stage moves the LED in small steps and scans a small volume
- A diffused glass is used as a screen about 1.5 m away from the mirror.
- The camera records the pictures.
- The analysis is in progress.

***TRIUMF**

Thank you.

Questions or comments?

Additional Slides

The Intermediate Water Cherenkov Detector (IWCD)

Other near detectors @ 280m

Upgraded ND280

Sub-kiloton scale water Cherenkov detector

Gadolinium (**Gd**) **loading** option

Ryosuke Akutsu's slide

Water Cherenkov Test Experiment (WCTE)

Goal: study detector systems and detector response to pions, muons, electrons and protons from 200 MeV/c up to 1000 MeV/c

~4m diameter,
~4m high
cylindrical water
Cherenkov detector

The Timing Spectrum

FWHM light profile at maximum output for 7 LED channels:

470nm - 0.9ns

405nm - 0.6ns

WaterMonitorBoard-3, 1-470nm, external, 10.00V, final-w-spec [New data format] Nph 3.3e+07 +/- 3.1e+07, Rise time 0.79 ns

365nm - 0.5ns

295nm - 0.7ns

278nm - 0.5ns

255nm - 0.5ns

235nm - 0.6ns

DAQ

PicoScope 3406D MSO is used:

 as an oscilloscope during operation

and

for data acquisition.

MIDAS for controlling the overall system, including DAQ, high voltages and environmental monitors, and the selective water purification system