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What do we want to study?

Less than a hundred years ago, neutrinos were thought to be undetectable...
Thanks to the development of detection methods on various neutrino sources, we've come a long way!

A large physics field was opened for us

Accelerator neutrino experiment are a great way to have a controllable & high statistics neutrino source.

However : with neutrinos at the O(100 MeV//GeV) energy scale, final states can get crowded with...
[Rev. Mod. Phys. 84, 1307]

- Charge Current (Quasi)-Elastic scattering
- Resonant Pion production

- Deep inelastic scattering

-> Require already a good tagging/tracking technology

v cross section / E, (10 cm2/ GeV)
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https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307

How do things get messy?
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Ideal world:
- Neutrino interacts on a free nucleon
- All the particles in the final state particles are reconstructed
- Initial creation process inferred

Channel of interaction Final states
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How do things get messy?
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Ideal world:
- Neutrino interacts on a free nucleon
- All the particles in the final state particles are reconstructed
- Initial creation process inferred

Channel of interaction
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, Pion resonance
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Final states
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Final state interactions

Need to produce interaction models based on theory + data to simulate the neutrino interactions!
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Why study neutral pions?
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* Neutral pions produced mostly by A resonance production inside the nuclei target

 1° are neutral particle, can can only be detected with their decay products

* |f the gammas are missed or if we just see 1 gamma and 1 proton in the final
state, can be miss-classed as another type of interaction

» Understanding all channels of interactions of neutrinos is essential!

YORK
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The MINERvVA experiment

Direction of neutrino beam —>
] Elevation View
Side HCAL
Side ECAL . -
3 g : 5 High resolution scintillator detector located at Fermilab in
Il e o i o ] .
HlE 35 ponereier | | B3| 22 |c: | S8 the NuMI beamline
HIE $s il sl [ |24
@ g Liquid %g‘ 8.3 tons total mo b 8 s . . . . .
Bl Heom | 2 [ 15tons | 30 tons £3 Beamline produces muon (anti) neutrinos that interact in the
Side ECAL 0.6 tons
\ Side HCAL 116 tons detector
2m —»

— \\ 5m
Helium Target 'i

\

Detector composed of a plastic scintillator Tracker (CH) and
of nuclear targets (Fe, C, Pb, Water)

l Measuring the evolution of x-section with different Z will

‘1 ‘ ‘ “ ‘ help generalizing cross section models

Fe, Pb Fe, Pb C, Fe, Pb WATER Pb Fe, Pb

Here, x-section measured on Pb and Fe
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What does a 1t° look like in MINERVA? %

(e,

120 L : — No evidence of activity consisteit with charged | i '6 -
e i pions or high hadronic energy = Event is selected | \ .n—o > I’l'
100 T |

90 - [ l 3

- Shower !

¥ candidate #1 _ J._g‘_'

o0 - =

— »*»——» P . "Muon track °
| e gt
- . e Perfect case scenario:
Shower 2
20 > ™ ! !
candidate #2 + | Muon track tagged by MINOS near detector
il i il itnn G 1o 2022 24 25 28 %0 2 3% % 3 4b 42 4 45 48 0 52 5 o5 %6 6 62 s 66 02 70 72 74 76 75 80 85 B 26 B2 90 02 54 % S8 teIEIGIeTIOTIZ e

2 showers consistent with gammas from 1t°

Showers are identified with Angle scan algorithm and with

Some limitations: their geometrical features.

No charged pion activity or High energy hadronic energy

Protons & pions can mimic shower signature

Hadronic energy lost inside passive materials (targets) NN N R
Interactions can get busy -> Larger background Dol TR e T T etk 1
“ Shower E N Y '
" . . _candidate #45 - " :h,_o:c:r
Final selection: at least one shower candidate @~ | - N R RRRRRRNRRRNRRNRNNI (| (/SARREEAE

YORK

u Noé Roy - Neutral pion production in MINERVA 1’



Understanding the backgrounds

Physics background |
* (More than 1 1) OR (1 m© and more than 1 ni¥) Deep inelastic scattering
* No m° and some ni* (N>0 1©), (M>0 r¥)
* No pions

“Plastic” background

Neutrinos that interact in plastic scintillator and not targets

Our selected data is made of the

Nuclear targets “Signal” and all the different types of
S background.
We know that the neutrino generator
Upstream plastic Downstream plastic does not reproduce perfectly well the
physics
Between plastic Use the selection in “sidebands” to

constrain our backgrounds

YORK
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Understanding the backgrounds

Ph SiCS baCk I'OU nd Proton sideband - [Lead] %103 High-W sideband - [Lead]
y g § Data POJ: 1.06E+21 —I—- Data § Data POT: 1.06E+21 | —I—- Data
® B600F= = =\ RO - TwGE+E2m - = - cC 1® signal (12.0%) ® MC PO’ L 1.18E+22 . - cC 1 signal (15.4%)
e (M h 1 0 O R (1 0 d h 1 + o , @ High-W CC ° (5.3%) 5} . @ High-W CC ° (25.9%)
( ore than 1 m ) ( T° and more than 1 = ) 0 Joint 2 i = 3.3 /40 7 S CCOE-like (30.6%) 0 Joint 72/ 1R =35.31/40 7 S CCOQE-like (5.0%)
n 5 @ CC ~* prod. (21.3%) S DI 5 = = | S cc = prod. (13.9%)
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hd N (0] T[O an d some m— e . Plastic betw. (18.8%) e Plastic betw. (19.7%)
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. N . = Other (3.3%) = Other (7.6%)
0 p I O n S :>j : Data: Stat. erroE‘s only :>j : Data: Stat. erroE‘s only
Mt LS osf- - - N - - - . . S e ]
—_ . . ackground tgnex . . ackground tgnex
_ —— 200k~ - (N - = = = = mym = s om e 1 .
1 m + Deep inelastic scatfering
, (N>0 1©), (M>0 w) :
Production 0.5 1 15 2 2.5 0.5 1 15 2

Reconstructed muon Py [GeV/c] Reconstructed muon P, [GeV/c]

1
+ Charged pion sideband - [Lead]
(8] T r
i = Data POJ: 1.06E+21 ata
O CCQE S' 9nala % 400k= = -MC P_O{ 18122 m :_ - = - CC 1n° signal (12.6%)
&) i - ' W High-W CC 7° (16.0%)
, — L 10 Joint ¢/ rif = 35.31 /40 7 @ CCQE-like (11.5%)
' ' 5 CC =* prod. (24.6%)
3 Plastic up. (3.7%)
0 1 >1 N | 0 S 300k= = = = l ..... :. - Plastic botw. (20.7%)
[Z] N Plastic down. (6.1%)
c Other (4.8%)
0 " L)
@ 200f--- S ... Pata: Stat. grrgrsonly,, ]

Signal tuned

Physics sidebands: o b
« High hadronic invariant mass (W) events -> More likely to be DIS events . .
« Michel electron in the event -> As Michel electrons are produced by it decay chain®~ °  ‘econstructedmuon . Geviel
« Gamma shower dE/dx consistent with proton -> If the gamma shower is in fact a proton

YORK Selection inside the “sidebands” to constrains our model with data/MC simultaneous fits.
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Understanding the backgrounds

“Plastic” background

Neutrinos that interact in plastic scintillator and not targets

Nuclear targets

Upstream
plastic

Between plastic

Plastic sidebands:

Downstream
plastic

Selection of interactions in the 3 plastic regions

Selection inside the “sidebands” to constrains our backgrounds
with data/MC simultaneous fits.
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Events / 0.075 GeV/c

Plastic up. SB in physics signal region - [Lead]
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Extraction of a cross section

Physics signal region - [Lead]

N T S = = o What do we need to extract a cross section ?
8 600} .ot 7tz 51 o + =+ | S Highw oG 2 1329 |
E . : N co n_r-p'rfel(i 351;3}5)‘12)
=g astic up. (3.6% . . .
° r | . st o v « Unfolding matrix from Data — MC studies
‘€ 400p= = = = === Other (2.8%) 1 . .
g Fe—— * Measured signal from data — predicted background
o . Y :- -at:kg-rou-nd -rfn-ed -----
* Flux from models and data measurements
* Number of Nuclei targets from the detector qualification

0.5 1 1.5 2 2.5
Reconstructed muon Py [GeV/c]

We have everything we need!
dat bkg—pred
i\ _ S0 M)
%108 Vu+ Pb — pu + 7%+ nucleon(s) + A’ %103 Vu+ Fe — u + 7° + nucleon(s) + A’
1

dp,.r O Nye (2 (ApuT); g eSS ]l § A I
2 : : P ommsmagsonos | 20 ] T Deta: St & syt rors
Y R o DU e o @ ........... g et onyy
. . . [ . . . [}
We see a large difference in x-section Pb vs Fe: £ : : 2 l l
Final state interaction effects. =3 ' : < l
%i ofb ....................... %1 I T L T
S : © :
. . S . . =
Those data will be useful to try different models } : : {
of pion productions! N I ; H i 0 . : ;
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Muon transverse momentum [GeV/c] Muon transverse momentum [GeV/c]
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Neutrinos in plastic scintillator

To come: x-section measurement on plastic scintillator

[JINST 16 P07060 2021]

® 2><103
£ r —+— Data
0 1.8 Ely+y
T [ y+X
) E X+
* Events are less crowded as C and H are lighter elements 14 EEXaX
12
* No passive materials due to the targets: Better reconstruction of the hadronic "
kinematics o5
. 06 gt
* Much more statistics N
» Developed a Machine learning (ML) algorithm similar to MicroBooNE ML segmentation® 2z~

to distinguish electromagnetic showers from gammas.
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LA o e s w B S 1 i
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E| 0 | S S . e S T S T F
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i EET | B i ', L .
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YORK [1] Phys. Rev. D 99 (2019) 092001 vy Invariant Mass (MeV)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07060/pdf

Conclusion

We have performed a measurement of neutral pion production on various targets
* Developed a method to reconstruct ° candidates in the MINERVA detector

 Extracted a cross section for Pb and Fe targets
» Showed variation of the x-section not reproduced by our model

* Article coming soon on those measurement

More results on neutral pion productions with higher statistics on scintillator coming soon
to provide more insights on the disagreements.

YORK
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What do we want to study?

Less than a hundred years ago, neutrinos were thought to be undetectable...
Thanks to the development of detection methods on various neutrino sources, we've come a long way!

A large physics field was opened for us
Accelerator neutrino experiment are a great way to have a controllable & high statistics neutrino source.

However : with neutrinos at the O(100 MeV//GeV) energy scale, final states can get crowded with...
[Rev. Mod. Phys. 84, 1307]

= |

21.4 .

- Charge Current (Quasi)-Elastic scattering %’1_2 l
- Resonant Pion production L 1
0.8

o
o

& 8
Y]

-> Require already a good tagging/tracking technology.

v cross section/
[=)
i <Y

(=)
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https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307

Shower reconstruction direction

Vertex xy-plane .

'l ‘O
oy .’
R o -
Shower K I
deviation K . 2 Shower
angle a oAt deviation
Ry angle a
Shower axis ',",'

polar angle 9
Shower

projected

Shower angle deviation D

w.r.t. muon &

Muon
momentum
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Muon vertex to Z-axis

Reconstructed
interaction vertex
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Reconstructed
interaction vertex

Vertex xy-plane
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Model comparisons

YORK

doldp [em?/GeV/c/nucleon]

Ratio to MINERvA Tune 4.0.1

<102 Cross-section models - [Iron]

Dat POT; 1,08E+21 —4— Data
e MINERVA Tune 4.0.1
e 4,0.1 whow-Q° "MINOS'

——— 4.0.1 wow-Q? "JOINT'

0.4r ——— 4.0.1 wlow-Q* 'NU1PI'

4.0.1 wiow-Q* 'NUNPI'

4.0.1 wiow-Q? "NUPIO'
l l 4.0.1 wiow-Q* "MENU1PT'
1 A A A L Ay A 1 s
0.5 1 1.5 2 25
Muon transverse momentum [GeV/c]

Data: Stat. & syst. errors

%

Cross-section models ratio - [Iron]

Data POT: 1.06E+21 ~—&— Data R
4t Data: Stat. & stvors e 4.0.1 willow-Q° 'MINOS'
e — 4,0.1 wiow-Q* 'JOINT'
— 4.0.1 wiow-Q° 'NU1PI'
4.0.1 wiow-Q* '"NUNPI'
3t . e 4.0.1 Wllow-Q* 'NUPIO'
e 4,01 WlOW-Q* "MENU1PY'

% 0.5 1 N 25
Muon transverse momentum [GeV/c]

[em?/GeV/c/nucleon]

Ny

doldp

Ratio to MINERvA Tune 4.0.1

<10 Cross-section models - [Iron]
Daa POT: 1.08E+21 —4— Data
s MINERVA Tune 4.0.1
«w GENIE 3.0.6 RFG #A
0.4+ —— GENIE 3.0.6 RFG AV
¢ ——— GENIE 3.0.6 LFG #A
GENIE 3.0.6 LFG iV
—— NEUT 5.0.2 LFG
l Data: Stat. & syst. errors
0.2¢ [
A Dl — " | T e
% 0.5 1 15 2 25
Muon transverse momentum [GeV/c]
Cross-section models ratio - [Iron]
Data POT: 1 06E+21 —&— Data
4F Dpata: Stat. & syst, errors ~— GENIE 3.0.6 RFG hA
—— GENIE 3.0.6 RFG hV
~—— GENIE 3.0.6 LFG A
- GENIE 3.0.6 LFG iV
al e NEUT 5.0.2 LFG
——
1 A N L 1 A
% 0.5 1 15 2 25

Muon transverse momentum [GeV/c]

Noé Roy - Neutral pion production in MINERVA

19



YORK

[em?/GeV/c/nucleon]

u, T

doldp

Ratio to MINERvA Tune 4.0.1

x10™

Cross-section models - [Lead]

0.2¢

o
.

Data POT: 1.06E+21

—4— Data
MINERVA Tune 4.0.1

4.0.1 wiow-Q* 'MINOS'
4.0.1 wihow-Q? "JOINT'
4.0.1 wiow-Q* "NU1PI'
4.0.1 wiow-Q* "NUNPYI'
4.0.1 wiow-Q* "NUPIO'

4.0.1 wiow-Q* "MENU1PI

Data: Stat. & syst. errors

A

%

0.5

1 15 2

Muon transverse momentum [GeV/c]

Cross-section

models ratio - [Lead]

25

Data POT: 1.06E+21
Data: Stat. & syst. errors

‘\

—&— Data
e 8,0.1 wflow-Q* 'MINOS’
e 4.0.1 wllow-Q* 'JOINT'
— 4.0.1 wliow-Q* 'NU1PI'

- 4.0.1 wiow-Q* 'NUNPI'
e 4.0.1 W/low-Q* 'NUPIO'

—— 4.0.1 wlow-Q* 'MENU1PI'

|

Q-

05

PR U S S S
1 1.5 2

Muon transverse momentum [GeV/c]

25

[cm?/GeV/c/nucleon]

T

daoldp

Ratio to MINERvA Tune 4.0.1

x10™%

Cross-section models - [Lead]

o
—
-

Data POT: 1,06E+21

—4— Data

s MINERVA Tune 4.0.1

~ GENIE 3.0.6 RFG /A

——— GENIE 3.0.6 RFG hV

~—— GENIE 3.0.6 LFG /A
GENIE 3.0.6 LFG hV

——— NEUT 5.0.2 LFG

Data: Stat. & syst. errors

L

05

1 " " 2

Muon transverse momentum [GeV/c]

Cross-section

models ratio - [Lead]

25

Data POT: 1.06E+21
Data: Stat. & syst. errors

—&— Data

~ GENIE 3.0.6 RFG A

w—e GENIE 3.0.6 RFG AV

e GENIE 3.0.6 LFG /A
GENIE 3.0.6 LFG iV

= NEUT 5.0.2 LFG

P A

PUEEPUN [ U S
0.5

1 15 2

Muon transverse momentum [GeV/c]

25

Noé Roy - Neutral pion production in MINERVA

20



Fractional uncertainties

Cross-section fractional errors - [Lead]
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Oscillation studies in long baseline neutrino experiments

Beam line

(anti) neutrino beam

A

0(100 km)

v

Far Detector

N, (E,) =P(v, ->v,) ®,(E,) o(E,) €(E,)

P(v” - vﬂ): Oscillation probability carried by the PMNS matrix

@, (E,): neutrino Flux, constrained by the near detector studies

o (E,,): Neutrino cross section, constrained by near detector studies and neutrino interaction models

€(E,): Detector efficiency, from Data-Monte Carlo studies

YORK
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How to understand the neutrino cross sections

Main channel of interaction for (anti) neutrinos: (Quasi) elastic scattering

v(v)

W=

[—(+)

Signal of interest:

Charged lepton emitted in time & space coincidence with a
hadron in the detector.

Different type of detector (plastic scintillators, water Cerenkov,
time projection chambers...)

But always the same dominant interaction of interest!

Noé Roy - Neutral pion production in MINERVA 2‘-'



The MINERVA experiment

e High resolution scintillator detector located at Fermilab in

Direction of neutrino beam —’

sl Elevaton View the NuMI beamline
Side HCAL
Side ECAL N . . . . .
- 5 | £3 Beamline produces muon (anti) neutrinos that interact in the
HIE €32 | €5 | o3 85 detector
sz %g Active Tracker g E § B S E 50
HIE 8 Region ,EE 85 |57 |28
o % iqui St 8.3 tons total 2 s 8 @ e .
5| newm | 2° ] RO 23 Detector tracker is composed of hexagonal planes, each
=<

SHeECAL Gion constructed from triangular hydrocarbon (CH) strips

Side HCAL 116 tons

— - 5m 2 m —»

| The planes are oriented on 3 different directions to be able
to get a 3D reconstruction of particles

i
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