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P-ONE is an initiative
between physicists in
Canada, Germany,
the US, Poland and
UK who are building
a neutrino telescope
in the North Pacific.

We are partnered with
Ocean Networks
Canada, who have
experience with
deploying ocean
based experiments,
and maintain
extensive undersea
infrastructure.



Introduction

% Strings of optical modules
instrumented with PMTs detect
cherenkov light from charged
particles produced in neutrino
interactions.
A large volume of water is required
because neutrinos have a small
interaction probability.
Using a neutrino telescope, one can
make high-energy cross-section and
oscillation measurements, as well as
look for point sources of cosmic :
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STRings for Absorption length in Water

Attenuation Length [m]

STRAW was deployed in 2018, to measure water Top Floats g — 150'm — v
clarity, which it confirmed is clear enough for a full
detector
Ongoing analyses of bioluminescence, -
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BIOfOUllng and Sedlm ntatlon Organic and inorganic sedimentation

k. o, can build up on underwater
| o infrastructure.
g ", ‘\ % Bacteria and other living organisms can
also colonize surfaces and grow.
We observed some buildup of material
on STRAW during an inspection in
2020.
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ANTARES Pathfinder - Biofouling Results (Amram et al 2003)
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The ANTARES
collaboration
measured the
fouling of their
optical surfaces in
the Mediterranean.
They extrapolated
an annual
efficiency loss of
2.4%.



Method Using Natural Light (Bioluminescence)

% Organisms in the water produce lel2

light, a phenomenon known as

—— up looking PMTs
bioluminescence.

down looking PMTs
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% Fouling accumulates more
quickly on upwards facing
substrates (ANTARES)
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% Large fluctuations track between
upwards and downwards PMTs.
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% We can estimate efficiency
losses due to fouling by taking
the ratio of up/down as a Preliminary
function of time.
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Measuring Fouling Directly

with the Flasher

Pulses from the LED flasher are
counted in every second in a 20-60
second run.

The expected number of flashes is
then calculated based on the flasher
frequency, and measured live-time.

So long as the properties of the
water don’t change significantly, any
decrease in the detection probability
can be attributed to efficiency
losses.
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Preliminary result with 4-years of data

Change in Efficiency, normalized to March 2019 (a.u.)
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A significant loss
in efficiency is
observed over
time.

The most extreme
losses are in the
module closest to
the sea-floor.



Biologically Motivated Models

L X4

A linear fit is a useful
benchmark, but what we
actually see is a delay with
minimal losses followed by a
rapid transition.
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To characterize this, we fit
biophysical models for
population growth, since our
underlying assumption is that
the efficiency losses are driven
by biofouling.
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Summary and Next Steps

Biofouling and sedimentation are effects that are
relevant to neutrino experiments in natural water.
Analysis of 4-years of data using the first P-ONE
pathfinder show a significant drop in transparency of
the optical surface.

The P-ONE collaboration is preparing a paper on
these results, pending cross-checks and input from
the Biology/Marine Science community on the
composition of fouling samples.

Our next step is to evaluate anti-fouling techniques
that can be deployed with future phases of P-ONE.
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