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Overview

- Ultimate goal: perform a high-dimensional and unbinned measurement using the ATLAS detector

 Part 1: The measurement
e The ATLAS detector

* Z+jets events

* Analysis details

* Part 2: The MultiFold method
« Unfolding 25m f
» Reweighting with neural networks
* MultiFold method
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Part 1: The Measurement

2023-06-19 CAP Congress 2023



The ATLAS detector

« The ATLAS detector is a general purpose detector located
at the Large Hadron Collider at CERN

* Main components:
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The ATLAS detector

« The ATLAS detector is a general purpose detector located
at the Large Hadron Collider at CERN

* Main components:
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The ATLAS detector
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« The ATLAS detector is a general purpose detector located
at the Large Hadron Collider at CERN

* Main components:

* Muon spectrometer: measures the muons, as they are
minimum ionizing particles they are not contained in the
calorimeters

>
.
Neutrind
5

» Electromagnetic and hadronic calorimeters: series of
sampling calorimeters designed to contain all
electromagnetic and hadronic activity

The dashed tracks
are invisible to
the detector

* Inner detector: measures charged particles by constructing
tracks using hits from the various silicon and gas detectors

\ \
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Z+jets events in the ATLAS detector

« Common process in the ATLAS detector and can be measured very precisely
* Low background process with easy-to-identify Z boson

* Precision probe of the Standard Model
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Z+jets events in the ATLAS detector

« Common process in the ATLAS detector and can be measured very precisely

* Low background process with easy-to-identify Z boson

* Precision probe of the Standard Model

+
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* The Z boson is a massive gauge boson
« Mediator of electroweak interaction

* In this case, interested in the decay to a
muon and an anti-muon

« ~3.4% of the time
« "Easy” to reconstruct
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Z+jets events in the ATLAS detector

« Common process in the ATLAS detector and can be measured very precisely

* Low background process with easy-to-identify Z boson

* Precision probe of the Standard Model

Note that it is
possible to have
more than one jet

+

U

U

* The Z boson is a massive gauge boson
« Mediator of electroweak interaction

* In this case, interested in the decay to a
muon and an anti-muon

« ~3.4% of the time
« "Easy” to reconstruct
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« Quarks cannot exist as free particles

« Undergo hadronization, producing a
collimated shower of particles known
as a jet

» Reconstructed by using a clustering
algorithm to group together tracks in
the inner detector, calorimeter energy
deposits, or a combination of both
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Z+jets events in the ATLAS detector

« Common process in the ATLAS detector and can be measured very precisely
* Low background process with easy-to-identify Z boson

* Precision probe of the Standard Model

Jets made from tracks

up
> 190 GeV . .
Pr = € measured in the inner detector

* 24 observables: related to the dimuon and muon kinematics, track jet kinematics and track jet substructure
« Using the full ATLAS Run 2 dataset with /s = 13 TeV
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Part 2: The MultiFold Method




Nature

« At ATLAS, have a few types of samples directly available to us:
- Data: what we measure

U n fo | d i n g p re | i m i n a ri e S Detector-level Particle-level
Data
\
(&) e

 Reconstructed (Reco)-level Monte Carlo Simulation: the truth-level MC
after it passes through the simulated ATLAS detector

Detector-level MC Particle-level MC
L &
.

* Want measurements of truth data, i.e. what actually happens in nature
* Needed to compare with results from other experiments and theory predictions

Simulation

» The process of correcting the data for the effects of the ATLAS detector is known as unfolding
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Nature

« At ATLAS, have a few types of samples directly available to us:
- Data: what we measure

U n fo | d i n g p re | i m i n a ri e S Detector-level Particle-level
Data
\
(&) e

 Reconstructed (Reco)-level Monte Carlo Simulation: the truth-level MC
after it passes through the simulated ATLAS detector

Detector-level MC Particle-level MC
XY
/)‘\\’ %

* Want measurements of truth data, i.e. what actually happens in nature
* Needed to compare with results from other experiments and theory predictions

Simulation

» The process of correcting the data for the effects of the ATLAS detector is known as unfolding

« Traditional unfolding methods: work with 1D binned data

Use information about detector
response from the MC samples
to correct the histogram for
detector effects in each bin

Create 1D histogram of the ! 1D observable histogram with number of
observable with the data events unfolded events per bin as output

\ 4

« Can do this in a multi-dimensional and unbinned way with the help of neural networks
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Sample reweighting

» Let's reweight the reco MC to match the data using a simple Gaussian example

« Each sample contains a set of events, each with a set of features X = (xy, ..., X34)
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MC Truth ?Data” Truth
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Events per bin (normalized)
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Sample reweighting

» Let's reweight the reco MC to match the data using a simple Gaussian example
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Sample reweighting

» Let's reweight the reco MC to match the data using a simple Gaussian example

« Each sample contains a set of events, each with a set of features X = (xy, ..., X34)
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Sample reweighting

» Let's reweight the reco MC to match the data using a simple Gaussian example

« Each sample contains a set of events, each with a set of features X = (xy, ..., X34)
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Sample reweighting

» Let's reweight the reco MC to match the data using a simple Gaussian example

« Each sample contains a set of events, each with a set of features X = (xy, ..., X34)
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Neural networks for reweighting

 Neural networks are well suited for reweighting tasks | mulaen, 5 )= (1,19
”Data” Truth
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Neural networks for reweighting

 Neural networks are well suited for reweighting tasks | (ke (0 0) =0 15
MC Truth ”Data” Truth
MC Reco B "Data” Reco
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* Main principle: train a classifier and reinterpret the outputs

Train a classifier using ¥ = (x4, ..., X4) as input |
to differentiate between reco MC and data |

Events gler bin (normalized)
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v
Use the ClaSSiﬂer Output, f(f) € [0,1], 00T S T 50 —25 00 25 50 75 75 —50 -25 00 25 50 75
to construct reweighting function X1 X1
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Neural networks for reweighting

Simulation ”Data”

* Neural networks are well suited for reweighting tasks IO Pyt o) oL 15)
MC Truth "Data” Truth
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* Main principle: train a classifier and reinterpret the outputs

Train a classifier using ¥ = (x4, ..., X4) as input |
to differentiate between reco MC and data |
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Higher weight if event
is more “data-like”

Simultaneously
reweights all 24
dimensions
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Neural networks for reweighting

 Neural networks are well suited for reweighting tasks | (ke (0 0) =0 15
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Neural networks for reweighting

 Neural networks are well suited for reweighting tasks | (ke (0 0) =0 15
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particle-level

1. The data must be binned
2. Can only unfold a small number of observables simultaneously Data
3. Do not consider the full phase space and so may miss \
hidden dependencies
» MultiFold aims to rectify this by performing unbinned and \

highly-dimensional unfolding using neural networks

Nature

Detector-level MC Particle-level MC
Phts =
L 3

Simulation
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particle-level
1. The data must be binned
2. Can only unfold a small number of observables simultaneously o Data
3. Do not consider the full phase space and so may miss E. \A
hidden dependencies 7
» MultiFold aims to rectify this by performing unbinned and \
highly-dimensional unfolding using neural networks
Eetf}i;h% .Sim. to Data
Step 1: Use a neural network to determine a reweighting ), Data
function that will transform the detector-level MC to match the =
o .
data for all observables (what we just did!) = Disiteeinoil zvel L Fouelied ol LG
=

— —
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particledevel
1. The data must be binned
2. Can only unfold a small number of observables simultaneously o Data
$=(
3. Do not consider the full phase space and so may miss = \
hidden dependencies 2
» MultiFold aims to rectify this by performing unbinned and \
highly-dimensional unfolding using neural networks
Step 1:
Rewcll'::;ht Sim. to Data
Step 1: Use a neural network to determine a reweighting , | Data
function that will transform the detector-level MC to match the z —
data for all observables (what we just did!) i DCtCCW"‘]CVd MC| . | Particle-level MC
- .
| R K =
Propagate the weigh lation : z\\
N

— —
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The MultiFold method

« Current unfolding methods present some challenges Detectot-level Particle-level
1. The data must be binned
2. Can only unfold a small number of observables simultaneously o Data
$=(
3. Do not consider the full phase space and so may miss = \
hidden dependencies 2
» MultiFold aims to rectify this by performing unbinned and \
highly-dimensional unfolding using neural networks
Step 1: Step 2:
Reweight Sim. to Data Reweight Gen.
Step 1: Use a neural network to determine a reweighting , | Data b, ‘
function that will transform the detector-level MC to match the = .
: : -2 Detector-level MC Fl e Particle-level MC
data for all observables (what we just did!) = ¢ . —
—= .
- R K =
Propagate the weights imulation : z\\ N
N

— —

Step 2: Determine a reweighting function that replicates the
reweighting in Step 1, but for the particle-level MC
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The MultiFold method

« Current unfolding methods present some challenges In the context of the previous example:

1. The data must be binned
2. Can only unfold a small number of observables simultaneously ]
03] 03 (e iter-1
3. Do not consider the full phase space and so may miss T | o e (e
hidden dependencies E
« MultiFold aims to rectify this by performing unbinned and £ om
highly-dimensional unfolding using neural networks R
L%90410
Step 1: Use a neural network to determine a reweighting ool
function that will transform the detector-level MC to match the . detector
data f Il ob N H st did| Propagate weights from w to
ata for all observables (what we just did!) truth-level and replicate function
Propagate the weights t imulation for the truth-level quantities
05l =3 &r;mi‘oi?)ed ”Data”, iter-1
. . . . . "Data” Truth (Target)
Step 2: Determine a reweighting function that replicates the 5

reweighting in Step 1, but for the particle-level MC

Solid black line: result after Step 2,
reweighting applied to the
should approach the truth "Data”

T 75 S50 -25 00 . X 7.5
Zparticle
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particle-level

1. The data must be binned
2. Can only unfold a small number of observables simultaneously Data
3. Do not consider the full phase space and so may miss \
hidden dependencies
» MultiFold aims to rectify this by performing unbinned and \

highly-dimensional unfolding using neural networks

Nature

- }g G— % <+

Push Weights

— —

Step 1: Step 2:
Rewcight Sim. to Data Rcwcight Gen.
Step ’1: Use a n.eural network to determine a reweighting ), Data o, ‘
function that will transform the detector-level MC to match the z —
data for all observables (what we just did!) = Detector-level MC| ___, | Particle-level MC
=
&
wn

Propagate the weights imulation

Step 2: Determine a reweighting function that replicates the
reweighting in Step 1, but for the particle-level MC

Propagate or-level MC simulation
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particle-level

1. The data must be binned
2. Can only unfold a small number of observables simultaneously Data
3. Do not consider the full phase space and so may miss \
hidden dependencies
» MultiFold aims to rectify this by performing unbinned and \

highly-dimensional unfolding using neural networks

Nature

- }g G— % <+

Push Weights

— —

Step 1: Step 2:
Rewcight Sim. to Data Rcwcight Gen.
Step ’1: Use a n.eural network to determine a reweighting ), Data o, ‘
function that will transform the detector-level MC to match the z —
data for all observables (what we just did!) = Detector-level MC| ___, | Particle-level MC
=
&
wn

Propagate the weights imulation

Step 2: Determine a reweighting function that replicates the
reweighting in Step 1, but for the particle-level MC

Propagate or-level MC simulation

And iterate...
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The MultiFold method

« Current unfolding methods present some challenges Detector-level Particle-level

1. The data must be binned
2. Can only unfold a small number of observables simultaneously Data
3. Do not consider the full phase space and so may miss \
hidden dependencies
» MultiFold aims to rectify this by performing unbinned and \

Nature

highly-dimensional unfolding using neural networks
Step 1: Step 2:
Rcweight Sim. to Data Rcwcight Gen.
Un—1 % Wn Vn—1 w—n> Up ‘
§ Dl el MG P“”deht; Pattcletley elniC
';‘, ctector-1evel v article-level 1V
vi'; L X 3
 Final result after n iterations: a reweighting function that g - R — % <«
transforms the particle-level MC into the "unfolded data” N i] Push Weights i}

« Measurement is an event sample instead of a 1D histogram like in a usual unfolding algorithm
* Unbinned
» Can calculate observables after unfolding

» For this analysis: 24 observables + weight as input and output (i.e. 24 dimensional unfolding)
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Part 3: Results
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Technical details

* Results shown here are using pseudodata (fake data with a known answer)

« Differential cross section: related to the rate of events as a function of an observable

« MultiFold results are compared with results obtained with iterative Bayesian unfolding

* IBU is a commonly used algorithm within the ATLAS experiment
* It comes with the drawbacks mentioned with respect to current unfolding methods

* Note that although results are shown in binned one-dimensional histograms, the MultiFold result is completely
unbinned and multidimensional
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Results: Dimuon and track jet kinematics

* MultiFold result agrees well
with the target

» Performs comparably with

IBU, but with all the
additional benefits
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Results: Derived observables

* One of the main benefits of MultiFold is that new observables can be calculated after unfolding without the
need to rerun anything

* Requires the quantities needed to construct the observable are available
» Given that we have included many kinematic quantities, this leaves plenty of options open
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 To stress, MultiFold was not trained on these observables but good agreement is still achieved

2023-06-19 CAP Congress 2023



Conclusion

« Performing a precision measurement of Z(— uu)+jets production at the LHC

Unfolding is a procedure to correct measurements for detector effects
* Needed to compare results with other experiments or theory predictions

MultiFold is a new method that can perform unbinned and highly dimensional unfolding
* Basic principle built on reweighting samples using density ratio estimation
« Unbinned: final result is a list of events with a weight, user can construct any binning
* High-dimensional: 24 observables available in events

Applying to ATLAS data for the first time

Results shown for pseudodata have good agreement with the target

Observables derived from the MultiFold results but not seen by the algorithm also perform well
(exciting!)

Thanks for listening! Questions?
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Detailed event selection

« Event must be of good quality
 Pass single muon trigger

* Muons: at least 2 muons with opposite charge, m,, within 10 GeV of the Z boson mass

* High pf¥ cutat 190 GeV

* Object selection
* Muons: pr > 25 GeV and || < 2.4, pass quality and isolation criteria
» Tracks: pr > 500 MeV, pass quality and track to vertex association, not from a muon
» Track jets: input tracks pass above cuts
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Full observable list

» Dimuon transverse momentum and rapidity: pz*, v,

* Leading and subleading muon transverse momentum, pseudorapidity, and azimuthal angle: pfru, p#z, Nut: Ny
¢u1: ¢/,L2
» Leading and subleading track jet transverse momentum, rapidity, azimuthal angle and mass:
» Forthe leading track jet: p%l, Vi1, $j1. Mjs
» Forthe subleading track jet: p%z, Viz: Pjz, Mz

* Leading and subleading track jet substructure:
* The number of tracks (constituents) in the jet: nélll néﬁ
« N-subjettiness variables: ©J*, 3", t1*, ©{% ¢J%, J°

* Ty gives a measure of how likely it is that the jet in question is made up of N subjets
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Measuring the differential cross section

The fiducial cross section for a particular process, X, is related to the probability that such a process will occur
inside a defined phase space

< Number of events observed
Ny

L < Total integrated luminosity

If we lived in a world with a perfect detector, that would be that

Unfortunately, have detector effects to contend with, this is where unfolding comes in

Number of events after
{u(NZ—mu) < correcting for detector effects

Oz-up = I using an unfolding algorithm

In the following, will express results as a differential cross section with respect to a certain observable, O:

dog oy UG
do LA,

where AO; represents the bin width of the ith bin of the histogram for observable O
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Full results
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