Performance of a Silicon SuperCDMS HVeV Detector Operated Underground at NEXUS

... and recently in Canada

Ziqing Hong, University of Toronto
On behalf of the SuperCDMS Collaboration
CAP Congress 2023

The Evidence for Dark Matter

Gravitational Lensing

Galactic Rotation Curves

~5 times as much dark matter in the universe as regular matter

Dark Matter Searches

Dark Matter Candidates

Looking for a wide range of DM candidates

 Dark matter masses from ~5 GeV down to eV

Detecting Low Mass DM

 Low mass DM models predicts low recoil energies

 Direct detection experiments limited by energy resolution

Detector Schematic

Cryogenic Calorimeter

Cryogenically cooled in dilution fridge

Transition-Edge Sensor (TES)

Response of TES

SuperCDMS Detectors

Low-background detector:

- Ionization & heat dual readout
 - Allow for discrimination between nuclear recoil (NR) and electron recoil (ER) events

For more details, see the following presentations

- The SuperCDMS SNOLAB Experiment
- Modeling cryogenic Dark Matter detectors for SuperCDMS

Low-threshold detector:

- Heat readout only
 - No event-by-event NR/ER discrimination
- Drift charge to amplify heat signal, enabling very low thresholds!

Phonon-mediated signal amplification

- Energy Deposition can cause ionization in semiconductors
 - A few eV (ϵ_{eff}) per ionization excitation
- Use Neganov-Trofimov-Luke (NTL) effect to amplify ionization signal
- Ionization yield (Y) different between NR and ER interactions
 - Y=1 for ER and Y~0.15 for NR
 - Potential for statistics-based
 NR/ER discrimination

Neganov-Trofimov-Luke Effect

$$\begin{split} E_{total} &= E_{recoil} + n_{eh} eV_b \\ &= E_{recoil} (1 + eV_b/\epsilon_{eff} \cdot Y) \end{split}$$

HV → HVeV Detectors

Tune into presentation "The SuperCDMS SNOLAB Experiment" to learn about these!

HVeV: Prototype HV detector

- Gram scale
- eV level resolution

Keep exploring the sensor limit!

Facilities

Two facilities for HVeV R&D and operations

Mobile refrigerator, can be deployed in calibration facilities

Cleanroom located ~100 m underground at Fermilab

Single electron-hole pair sensitivity

- "Version 2" of HVeV detectors
- ~3 eV resolution

- Calibrated to hundreds of keV
- Energy resolution < 5% over the full range

Iterations of HVeV dark matter experiments

- Burst events detection and study
- Hypothesis: originated by SiO₂ in the detector holder (PCB)

- Coincidence measurement
- Confirmed external origin of this background and its reduction with • coincidence detections

- Removed PCB from detector holder
- Elimination of quantized background above 1eh peak

Nuclear recoil calibration

Latest Detector Performance

BEST IN CLASS

- "Version 3" of HVeV detectors
- Lower transition temperature
- Operated at NEXUS

Detector Spectrum

• Achieve $\sigma_{\rm b}$ = 1.097 eV ± 0.003 eV

Energy of Random Triggers

Conclusions

- Well-motivated DM candidates below ~5 GeV
- HVeV detectors can obtain exceptional resolutions and high signal to background ratio
- "Version 2" of HVeV detectors achieved ~3 eV resolution and single electron-hole sensitivity
- "Version 3" achieved ~1eV baseline resolution
- More science results anticipated
- Stay tuned!

Bonus Slides

QET Design and Transport

Low threshold detectors also needed in CEvNS studies

- Coherent Elastic neutrino-Nucleus Scattering (CEvNS) cross section as a function of recoil energy for typical neutrino energies at
 - Spallation Neutron Source (30 MeV)
 - a reactor (3 MeV)
 - with an electron capture source (1 MeV).
- Low threshold detectors are also critical for neutrino experiments

