

Machine learning applications for NEWS-G

Noah Rowe

CAP 2023

NEWS-G – Spherical Proportional Counter

Signal Generation:

- 1. Primary ionization
- 2. Electron drift
- 3. Townsend avalanche
- 4. Positive ion drift

Problem Definition

Goals:

- Utilize machine learning methods to remove noise from recorded detector signals
- Model implementation should aid in measuring important signal characteristics, such as amplitude and risefeatures

Methods – Model Architecture

Latent

Convolutional Autoencoder

- ~300,000 parameters
- ~2-3 days of training

Methods – Model Training

Trained on a simulation-based dataset modeled after 2 detectors

X

Simulated pulses + real noise

Y

Simulated pulses

2-Channel Example Pulses

Energy: ~250eV

Single Output Model

Single Output Prediction Examples

Primary Electron Counting

Tested 4 different primary electron counting strategies:

- Peak finding
 - Noisy data
 - Denoised data
- Single output prediction
 - Trained on up to 5 primary electron events
 - Trained on up to 10 primary electron events

Evaluated on a simulated two-channel dataset of up to 5 primary electrons

Primary Electron Counting

Conclusion

Developed and tested two methods to incorporate machine learning in NEWS-G

- Noise removal (denoising) model
- Single output prediction model

Primary electron counting results

- Single output results can offer improvements on standard approach, depending on the training dataset
- Peak finding on denoised dataset performs better than standard approach

Thank you!

Additional Slides

1-Channel Example Pulses

Energy: ~170eV

Energy: ~1370eV

Primary Electron Counting Performance

Energy Measurement – Argon Calibration

- Tested energy predictions on S30 detector Ar37 calibration data
- All energy prediction methods closely follow traditional energy predictions
 - Single output model predictions have slightly lower fitted peaks
- Above the energy range we expect improvement

Machine Learning Extensions

- Other single-output predictions
 - Direct energy prediction, pulse shape classification
- Double-deconvolution layer implementation
 - Explicitly add preprocessing steps to network layers
 - Learn to return primary electron arrival times
- Different model architectures for improved performance
 - Adversarial networks

Simulated Energy Resolution Results

Event Triggering Results

- Triggering efficiency test on simulated data
- 10000 events with a simulated pulse, 10000 noise traces

Energy Resolution Measurements

Energy Prediction Error Magnitude

Model Architecture

Layer	Stride	Window	Output
Input			4096, 1
Convolution	1	1	4096, 8
Convolution	1	9	4088, 16
Average Pooling	2	2	2044, 16
Convolution	1	17	2028, 32
Average Pooling	2	2	1014, 32
Convolution	1	33	982, 64
Average Pooling	2	2	491, 64
Convolution	1	33	459, 32
Transpose Convolution	1	33	491, 32
Upsampling	2	2	982, 64
Transpose Convolution	1	33	1014, 64
Upsampling	2	2	2028, 64
Transpose Convolution	1	17	2044, 32
Upsampling	2	2	4088, 32
Transpose Convolution	1	9	4096, 16
Convolution (output)	1	1	4096, 1

NEWS-G Signal Generation

Detector Response

