Pulseshape Discrimination using Silicon Photomultipliers with Argon-1

Michael Perry

Carleton University, DEAP-3600 Collaboration CAP Congress 2023, University of New Brunswick

June 19th, 2023

Overview

- DEAP-3600 Overview
- Pulseshape Discrimination (PSD)
- Argon-1 Prototype at Carleton
- PSD Differences between PMTs and SiPMs

Results

DEAP-3600 Overview

DEAP-3600

- Dark matter Experiment using Argon
 Pulseshape discrimination
- Single phase liquid argon (LAr) detector searching for WIMP dark matter
- 2km underground at SNOLAB in Sudbury, Ontario
- Scintillation light due to recoiling argon used to discern energy of incident particle
- Pulseshape discrimination is a powerful background rejection technique

Excimer Decay Times allow for PSD

- Argon will scintillate through singlet state (NRs alphas, neutrons, WIMPS) or triplet state (ER – electrons, gammas)
- Define fPrompt = Prompt Light/ Total Event Light

-0.25

Charge Integration in Prompt Window

$$F_{Prompt} = \frac{\sum_{t>t_{start}}^{t< t_{prompt}} PE(t)}{\sum_{t>t_{start}}^{t< t_{total}} PE(t)}$$

- Typical t_{prompt} = 60 ns, t_{start} = -28ns and t_{total} = 10000 ns
- Common estimator of PE is

$$qPE = \frac{Q}{Q_{SPE}}$$

 Integrate charge in prompt window, divide by total charge

Ref: Eur. Phys. J. C (2021) 81:823

Generic PMT Pulse from DEAP Data

Argon-1

Detector and Deployment System

Argon-1

- Liquid argon cryostat containing ~35kg
 LAr (~10% within AV)
- Signal detection facilitated by Hammatsu MPPC Silicon Photomultipliers (SiPMs)
- Fully instrumented DAQ and purification system

Useful for ex-situ measurements for

DM experiments

35.5cm

Source Deployment System

- Ability to deploy alpha sources directly into LAr volume
- Allows for PSD studies for ER and NR events with external gamma sources (Cs-137, Co-60) and internal alpha sources (Am-241, Rn-222 decay chain)

Results of PSD with SiPMs

PSD with SiPMs

- Slight issue doing charge based PSD...charge response of SiPMs is slow (compared to PMTs)
- Cannot lengthen prompt window
- A SiPM pulse is longer than a typical prompt window, low prompt charge!

Subpeak Heights

Instead, take sub-peak time, use sub peak heights!

Cs-137 run with integrated charge model (left) and sub peak height model (right)

Amplitude base PE
$$aPE = \frac{h}{h_{SPE}}$$

Where h is the subpeak height in ADC units

Model relies on if the sub-peak time is in prompt window now

Preliminary Results

DEAP-3600 Data (PMTs)

Recall from DEAP data, expect NR events to be 0.6-0.8 fPrompt (no source deployed)

Expected fPrompt behaviour can be reproduced with sub-peak height model! (Rn-222 source)

Conclusions

- Pulseshape discrimination is a powerful tool for rejecting background in rare event searches in liquid argon
- Future experiments will rely on SiPM technology for signal detection
- Even with a slow charge response, SiPMs still demonstrate powerful PSD capabilities
- Thank you!

Backup

Scintillation Physics of Argon

Incident radiation excites or ionizes argon

