

Search for a fermiophobic Charged Higgs through low-mass $W^{\pm}\gamma$ resonances with the ATLAS detector

Zhelun Li

McGill University

June 21, 2023

Sections

Introduction

Event Selections

Invariant mass reconstruction

Background Estimations

Fake treatment

 $e \to \gamma$ fakes

Jets faking photons Overall Background

Conclusion

Fermiophobic Charged Higgs search

Introduction

- After the discovery of the scalar Higgs, speculations are raised of a more complicated Higgs sector.
- The Georgi-Machacek (GM)* Model is one such model with $H_5^0, H_5^{\pm}, H_5^{\pm\pm}$
- H_5^{\pm} decays fermiophobically, to $W^{\pm}Z$ or $W^{\pm}\gamma$, if $m_{H3} > m_{H5}$.
- There have been ATLAS searches* for $H_5^{\pm} \to W^{\pm}Z$ with $m_{H_5} > 200$ GeV.
- \blacksquare Our analysis focuses on resonances below 200 GeV where the $W^{\pm}\gamma$ decay channel dominates.

*GM model paper link

*ATLAS search

Feynman diagrams

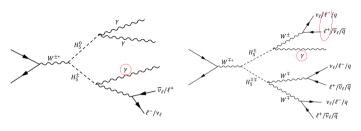


Figure 1

- Searching final states of $l + \nu_l + \gamma + X$. Try to stay model independent.
- \blacksquare Simulation samples are generated with
 - $s_H \stackrel{\text{def}}{=} \frac{2\sqrt{2}v_{\chi}}{v} = 10^{-4}, WZ \text{ final states are suppressed by } s_H^2$

Event selections

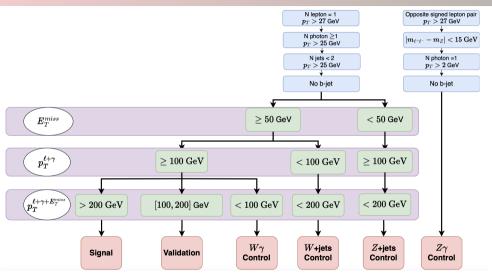


Figure 2: Event selections.

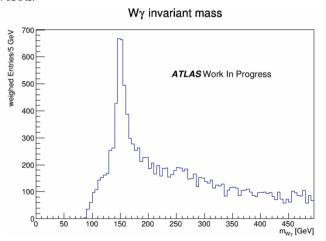
Building neutrino momentum

■ Infer the neutrino momentum by assuming the W boson is on-shell:

$$m_{\ell\nu} = \sqrt{(E^{\nu} + E^{\ell})^2 - (\mathbf{p}^{\nu} + \mathbf{p}^{\ell})^2} = m_W$$

where $E_{\nu} = \sqrt{p_x^{\nu 2} + p_y^{\nu 2} + p_z^{\nu 2}}$

- $\mathbf{p}_{\mathbf{T}}^{\nu}$ is modelled by $\mathbf{p}_{\mathbf{T}}^{\nu} \approx \mathbf{E}_{\mathbf{T}}^{\text{miss}}$, p_{z}^{ν} is the only unknown.
- The smaller solution is picked in case of two real solutions
- In case of complex solution, we minimize the following constraint:


$$C(p_x^{\nu}, p_y^{\nu}, p_z^{\nu}) = \sum_{i=x,y} c_i (p_i^{\nu} - E_i^{\text{miss}})^2 + c_z (p_z^{\nu} - \Re(p_z^{\nu,\mathbb{C}}))^2 + c_m (m_{\ell\nu} - m_W)^2$$

where $\Re(p_z^{\nu,\mathbb{C}})$ is the real part of the original complex solution

Invariant mass

Resonance recovered.

 $\textbf{Figure 3:} \ \operatorname{Reconstructed\ invariant\ masses\ of\ the\ charged\ Higgs}.$

■ Estimate the fake rate of $e \rightarrow \gamma$ using the following regions:

Region	$N_{\ell}(>27~{\rm GeV})$	$N_{\gamma}(>27 \text{ GeV})$	$N_{\rm jets}(>25~{\rm GeV})$	$N_{ ext{b-jets}}$
ee	2	0	> 1	0
$e\gamma$	1	1	> 1	0

Table 1: $e\gamma$ control regions. $N_{\rm jets} > 1$ is required to keep orthogonality.

- Slice them in bins of p_T and η of e and γ .
- Perform a fit to extract the "signal" (resonance) part
- Fake rate is given by:

$$FR_{e \to \gamma}(p_T, \eta) = \frac{N_{e\gamma}^{sig}}{N_{ee}^{sig}}$$

■ An example of the $m_{e\gamma}$ in the bin of 27 GeV $< p_T^{\gamma} < 35$ GeV and $|\eta| < 0.6$.

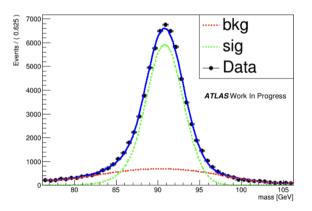


Figure 4: Z mass resonance in the $e\gamma$ channel.

2D rates

- Fake rate is close to Monte Carlo (MC) simulation: $\frac{FR_{\text{data}}}{FR_{\text{MC}}} \approx 1$
- MC is used with fake rate ratio as corrections.

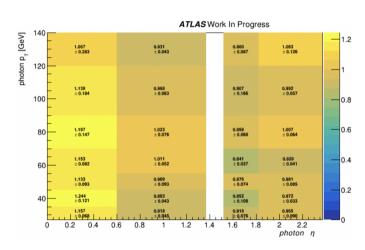


Figure 5: 2D fake rate ratios.

Jets faking photons

- The template fit method was used to model the jets faking photons.
- Data-driven estimate of fakes is based on the **Isolation Energy** $(E_{\text{Iso}}^{\gamma})$:

$$E_{\rm Iso}^{\gamma} = E_T^{\gamma, \text{topo}40} - 0.022 \cdot p_T^{\gamma}$$

- where topoEt40 $(E_T^{\gamma,\text{topo40}})$ is the energy deposited within R = 0.4 of the photon in the $\eta \phi$ plane.
- Templates are fitted to the observed E_{Iso}^{γ} distribution to form an estimate of the fake contribution.

Jets faking photons

■ Data-driven estimate of fakes is based on the **Isolation Energy** (E_{Iso}^{γ}) :

$$E_{\rm Iso}^{\gamma} = E_T^{\gamma, \text{topo}40} - 0.022 \cdot p_T^{\gamma}$$

where topoEt40 ($E_T^{\gamma,\text{topo40}}$) is the energy deposited within R=0.4 of the photon in the $\eta-\phi$ plane.

 Real and fake templates are obtained from MC and data.

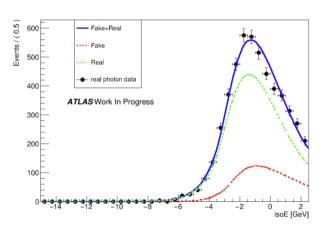
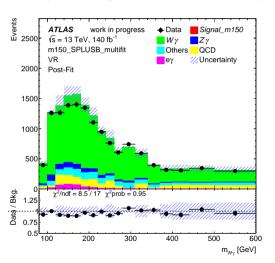
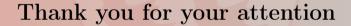
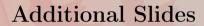



Figure 6: Template fit in the $W\gamma$ control region. 140 GeV $< m^{\ell+\gamma+E_{T}^{miss}} < 160$ GeV in

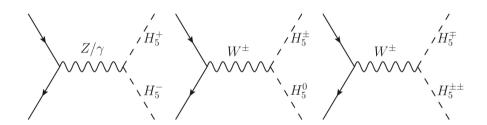
■ Reviewing results internally. Looking to unblind within the year.



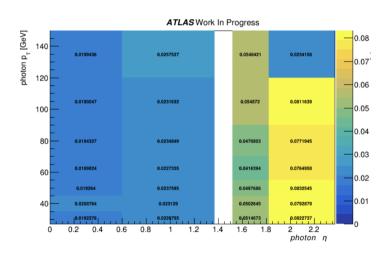
Conclusion



- This analysis is going to be the first to search for charged Higgs with $W\gamma$ resonance below 200 GeV.
- \blacksquare Higgs mass is reconstructed by inferring neutrino momentum from W-decay.
- Backgrounds are modeled by MC. Processes with misidentified objects are modeled by data-driven methods.
- Good agreement between MC and data in control regions.
- Data in the signal region is expected to be unblinded this year.

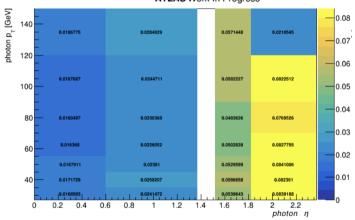


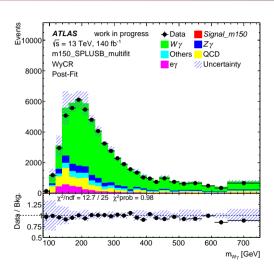
Signal


- $H_5^{\pm}H_5^0$ and $H_5^{+}H_5^{-}$ are the signal processes being considered
- $H_5^{\pm}H_5^{\mp\mp}$ is too complicated due to three massive bosons contributing to the final state

- Simulation samples are generated with
 - $s_H \stackrel{\text{def}}{=} \frac{2\sqrt{2}v_{\chi}}{v} = 10^{-4}$, WZ final states are suppressed by s_H^2 ■ 100 GeV $< m_{H_5} < 200$ GeV, in 10 GeV intervals
 - Z.Li (McGill)

Fake Rate data




Fake Rate MC

