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The importance of electrons for LHC
physics



The importance of electrons for LHC physics

� Particles of second or third generation, as well as force carrier,

are unstable.

� They decay into particles of first generation.

� Electrons are first generation particles =⇒ they are

particularly important for analysis with leptons in the final

state.

Examples of processes with electrons in the final state

� Vector bosons decay : W −→ eν and Z −→ ee;

� Higgs bosons principal decays : H −→ W+W−, H −→ ZZ ,

H −→ τ+τ−, H −→ Zγ;

� Some beyond the Standard Model (BSM) phenomenon :

SUSY, vector-like quark, BSM Higgs, etc.
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Electron identification in ATLAS



Electron identification in ATLAS

The current algorithms used for electron

identification (e-ID) in ATLAS are the

Likelihood and the DNN.

Background classes

� Charge flip (CF);

� Photon conversion (PC);

� Heavy flavor (HF) ex.: B → eX ;

� Electromagnetic light flavor (LFeγ) ex.: π0 → γγ;

� Hadronic light flavor (LFhad) : π± faking electrons.

Figure 1: Typical signature of particles in the ATLAS detector

Olivier Denis ATLAS e-ID CNN trained in data 3/10



Convolutional neural networks



Convolutional neural networks - Architecture
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CNN

CNN

CNN
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...
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Figure 2: Global neural network architecture.

� Multi convolutional neural

network (multi-CNN).

� Takes same high level

variables (HLVs) than the

LLH and DNN as input.

� Takes calorimeter images,

tracks, and some other

HLVs as additional input.

� Makes use of more detail

information than its

conventional counterpart,

which allows it to identify

electrons more efficiently
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Convolutional neural networks - Training with Monte Carlo

� Discriminating performance is assessed

by comparing signal and background

efficiencies (rate of acceptance) at

various probability cuts.

� At 70% signal efficiency, signal

purification (ϵsig/ϵbkg) can reach up to

2000 and outperform conventional

methods by a factor 10.

� Pretty good improvements with MC

trained CNN.

Figure 3

Olivier Denis ATLAS e-ID CNN trained in data 5/10



Experimental data sample



Can we improve even further?

� Experimental data is necessarily closer to reality than MC.

� Data is not labeled =⇒ impossible to use for training without some preprocessing.

� The most common background is light flavor hadrons faking electrons (LF)

� We design a sample pure in LF
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Experimental data sample - Sample purity

Class Fractions (%)

Signal 2.8e-03

CF 0.000

HF 0.120

PC 0.504

LFeγ 27.572

LFhad 71.711

Other 0.089

Total LF 99.283

Table 1: Distribution of each class in the

MC sample.

(a) (b)

Figure 4: Monte Carlo sample composition before (a) and after (b) applying a

preselection and cuts to veto W and Z bosons.

� Purifying cuts are applied to the initial data sample.

� The last set of cuts make sure to remove signal at high ET.

� We obtain a sample extremely pure in LF as shown in table 1.
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Experimental data sample - MC vs Data

Comparing Data and MC:

� Compare the distribution of the HLVs in each sample.

� Samples have different ET and η spectrum

� Narrow ET and η bins and normalize to 1 for fair comparison.

Example HLVs:

� f3 : Ratio of the energy in the third layer to the total energy

in the EM calorimeter.

� d0/σ(d0) : Significance of transverse impact parameter

defined as the ratio of d0 to its uncertainty.

� Rη : Ratio of the sum of the energies of the cells contained in

a η × ϕ = 3× 7 rectangle (measured in cell units) to the sum

of the cell energies in a 7× 7 rectangle, both centred around

the most energetic cell.
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Experimental data sample - MC vs Data
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� Most HLVs have the same

distribution between MC and Data

(see left plots for example).

� However, there is a significative

difference in the distributions for

HLV like f3, Rη (see right plots) or

∆ϕres , especially at low ET.

� Suggests that Monte Carlo

simulation is imperfect at lower

energy =⇒ there is room for

further improvements in e-ID.
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Conclusion



Conclusion

Figure 6: A beautiful event display of a Higgs decaying

into 2 b quark and a Z which decays into two electrons.

� e-ID is crucial for many physics analysis in ATLAS.

� The CNN can improve e-ID performance.

� Data and MC have significant differences, especially at

low ET.

� Training in data should provide even better e-ID

performance.
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