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Background
The Top Quark

Heaviest known fundamental particle (mt ≈ 172.5GeV)

I First place a new particle could be observed, particularly if it couples to mass

Extremely short lifetime (∼ 5× 10−25s)

→ Faster than hadronization!

I Decays weakly (t→Wb), before hadronization can occur

I Only place to study properties of a “bare” quark

Precise measurements enhance our sensitivity to possible beyond SM effects
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Background
Top-Antitop Pair Production (ttbar)

Top quark decays to b and W
∼99% of the time

W decays hadronically with ∼70%
branching ratio and leptonically
with ∼30%

Focus on semi-leptonic decays
(∼30% branching ratio)
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Objective: tt̄ Reconstruction

Algorithms:

Well-established and widely used

E.g. Kinematic Likelihood Fitter
(KLFitter), TtresChi2 (Chi2), and
PseudoTop (PT)

Determines best permutation of
detector-level jets to particle-level
jets by:

I Employing kinematic constraints
(assuming a four-jet system)

I Sometimes aiming to maximize
a likelihood or minimize a
chi-squared

Reconstruct the top and anti-top
4-vectors from this permutation

Deep Neural Networks (DNNs):

Determines weights and functions
(through training) that map
typical detector-level objects to
the expected parton-level objects

Potentially more precise, more
efficient, and less model dependant

3 slight variations we’re working
on: TRecNet, TRecNet+ttbar,
and TRecNet+ttbar+JetPretrain

Goal:

Design a DNN to reconstruct tt better
than current algorithms!
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Workflow

“Truth”/“Simulations”

Generate hard-scattering with
POWHEG (parton-level)

Simulate parton shower and
hadronization with Pythia8
(particle-level)

→

“Measured”/“Reco Input”

Detector response simulated by
Geant4 (detector/reco-level)

I Jets: (pT ,η,φ,E), btag
I Lepton: (pTlep

,ηlep ,φlep)
I Missing Transverse Energy:

ET ,φET

↓
“Predictions”/“Reco Output”

Previous fitting algorithms vs. Top
Reconstruction Neural Network

I Hadronic Top:
(pTth

,ηth ,φth ,mth )

I Leptonic Top: (pTtl
,ηtl ,φtl ,mtl )

I ttbar: (pTtt̄
,ηtt̄ ,φtt̄ ,mtt̄)
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Architectures
Iteration #1: TRecNet (TRN)

TDDense layers treat each jet as a
separate “slice”

“Jet Classifier” learns which jets are
relevant to tt̄ process

Jets “slices” are multiplied by
weights from “Jet Classifier”
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Architectures
Iteration #1: TRecNet (TRN)

TDDense layers treat each jet as a
separate “slice”

“Jet Classifier” learns which jets are
relevant to tt̄ process

Jets “slices” are multiplied by
weights from “Jet Classifier”

Predicts leptonic 4-vectors (tl ,Wl)
first, since their classification is
easier, and then uses this
information to help inform
predictions on the hadronic
4-vectors (th,Wh)
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Architectures
Iteration #2: TRecNet+ttbar (TRN+ttbar)

TDDense layers treat each jet as a
separate “slice”

“Jet Classifier” learns which jets are
relevant to tt̄ process

Jets “slices” are multiplied by
weights from “Jet Classifier”

Predicts leptonic 4-vectors (tl ,Wl)
first, since their classification is
easier, and then uses this
information to help inform
predictions on the hadronic
4-vectors (th,Wh) and tt̄ variables
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Architectures
Iteration #3: TRecNet+ttbar+JetPretrainUnfrozen (TRN+ttbar+JPU)

Obtain weights for the jet
classifier using matched jet tags

Transfer these weights into this
section of the overall model

Unfreeze weights and fine-tune
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Results
Hadronic pT Response Matrices

KLFitter (6 jets flag)
(LL > −52→ 82%):

TRecNet+ttbar+JetPretrainUnfrozen
(No Cuts → 100%):

TRecNet+ttbar+JPU is more diagonal than KLFitter =⇒ improved precision!
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Results
Hadronic pT Resolution

TRecNet+ttbar+JPU is more narrow and less skewed than KLFitter =⇒ improved precision!
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Results
Hadronic pT Resolutions at Different Momenta

Neural networks completely remove the extra
bump at high pT !

I Jets become more difficult to resolve at high pT
I No longer a one-to-one match between

parton-level quarks and detector-level jets
I Neural networks use all jet info, but algorithms

use only best permutation of 4 out of 6

pT < 100 GeV 250 < pT < 500 GeV pT > 500 GeV
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Results
Leptonic pT Resolutions at Different Momenta

No extra bump at high pT on leptonic side!

I Only one b-jet to resolve

But neural networks still have better resolution
over range of pT

pT < 100 GeV 250 < pT < 500 GeV pT > 500 GeV
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Results
mtt̄ Resolution

Neural network improves upon reconstruction of mass of tt̄ system

Adding tt̄ variables to the neural network helped improve precision for mtt̄
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Conclusions and Outlook

Advantages of the neural networks:

I Appear to improve upon results of from likelihood-based algorithms
I Perform more efficiently
I Flexibility to handle events with more or less than 4 jets (and thus performs

better than previous methods in the boosted topology)

Future possibilities and outlook:

I Investigating impact of number of input jets
I Hypertuning to further fine-tune model
I Measure model dependency
I Include systematics to obtain a more quantitative measure of the neural

network’s improvement
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Background
Parton-level vs. Particle-level vs. Detector-level
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Background
Parton-level vs. Particle-level vs. Detector-level

Parton-level: Only includes perturbative matrix element calculations

I E.g. hard scattering events generated by POWHEG

Particle-level: Includes both perturbative and non-perturbative matrix
element calculations

I E.g. parton shower/hadronization components handled by Pythia8

Detector-level: What we measure

I E.g. data or simulated data from Geant4
I The top reconstruction algorithms we’re using are at this level
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Background
Boosted vs. Resolved Topology
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Background
Coordinate System

η = − ln[tan(θ2)]
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Reconstruction Algorithms
Kinematic Likelihood Fitter (KLFitter)

Best permutation of jets determined using kinematics and likelihood
calculations:

L =B(mq1q2q3 |mt , Γt) · B(mq1q2 |mW , ΓW ) · B(mq4`ν |mt , Γt) · B(m`ν |mW , ΓW )·
4∏

i=1

Wjet(E
meas
jet,i |Ejet,i ) ·W`(E

meas
` |E`) ·Wmiss(E

miss
x |pνx ) ·Wmiss(E

miss
y |pνy )

I Breit-Wigner terms (B) → quantify agreement of known masses with
measured decay products

I Transfer function terms (W ) → quantify agreement of fitted energies and
missing transverse momentum components with measured values
(detector-specific and representative of experimental resolutions)

Likelihood calculated for each possible association of detector-level jets to
particle-level jets, where mt , Ejet,i , E`, and ~pν are treated as parameters varied to
maximize the likelihood

Retain permutation with highest likelihood (called the “best permutation”)

Can make cuts on logL to separate well- and poorly-reconstructed events
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Reconstruction Algorithms
Breit-Wigner Functions and Transfer Functions

Breit-Wigner Function:

B(E |M, Γ) =
k

(E 2 −M2)2 + M2Γ2

where,

k =
2
√

2MΓγ

π
√
M2 + γ

and
γ =

√
M2(M2 + Γ2)

Transfer Function:

W (E ) =
Y (E )

X (E )

∣∣∣∣∣
initial conditions = 0

where,

Y = laplace transform of output

and

X = laplace transform of input

︷
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Reconstruction Algorithms
TtresChi2

Best permutation of jets determined using kinematics and chi-squared
calculation:

χ2 =
[mjj −mWh

σWh

]2

+
[mjjb −mjj −mth−Wh

σth−Wh

]2

+
[mb`ν −mt`

σt`

]2

+
[ (pT ,jjb − pT ,b`ν)− (pT ,th − pT ,t`)

σpT,th−pT,t`

]2

I Constraint on dijet mass to form hadronic W
I Constraint on three jets to form hadronic top – contribution of hadronic W

subtracted to decouple first two terms, since mjj and mjjb are highly correlated
I Constraint on remaining jet, lepton and neutrino (met) to form leptonic top
I Constraint on transverse momentum balance between the two top quarks (pT

should be similar, as expected in a resonance)

Expected values of parameters mWh
, mth−Wh

, mt` , pT ,th − pT ,t` as well as
their uncertainties σWh

, σth−Wh
, σt` , σpT,th−pT,t`

are obtained from the
simulated Z’ events by matching reconstructed objects to truth partons

Can make cuts on χ2 to separate well- and poorly-reconstructed events
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Reconstruction Algorithms
PseudoTop

Uses lepton, jet, and missing transverse energy measurements, as well as
known mass of W boson

Only two b-tagged jets with highest pT are considered part of the system

Algorithm:

1. Reconstructs neutrino 4-momentum

I px and py obtaining from met
I pz calculated by conservation of momentum

2. Reconstruct leptonic W from lepton and neutrino

3. Reconstruct leptonic top from leptonic W and b-tagged jet closest in
∆R =

√
∆φ2 + ∆η2 to lepton

4. Reconstruct hadronic W from the two light-flavoured jets whose
invariant mass is closest to mass of W boson

5. Reconstruct hadronic top from hadronic W and remaining b-tagged
jet
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Neural Networks
Pre-Processing Trials

Model performance was evaluated on validation data using mean-squared
error (mse = 〈truth − prediction〉2)

Mean/variance scaling
(
xscaled
i = xi−x̄

σ(x)

)
vs. mean/max scaling

(
xscaled
i = xi−x̄

max(|x|)

)
I Standard procedure for allowing the network to focus on each variable equally

Encoding φ with sin(φ) and cos(φ) vs. triangle wave of sin(φ) and cos(φ)
vs. px and py
I Former two produced edge peaks that the network has trouble predicting

Boxcox transformation of pT
(
pT =

pλT−1

λ

)
vs. (px , py ) vs. pT

I Boxcox did better on average, but poorly reconstructed low pT events
I px and py difficult to predict, resulting in large compounding error for pT
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Neural Networks
Pre-Processing Procedure

φ encoding (with

mean/max scaling)

Final procedure:

I Encode φT with sin(φT ), cos(φT ) and all other φ with px and py
I All inputs (except btag ) undergo mean/max scaling
I Model predicts (pT , px , py , η,m) for top quarks and Ws in mean/max scale
I Invert mean/max scaling and φ encoding to return predictions to original scale
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Training Features
Loss Function

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Loss function: quantifies error for current state of model – want to change
weights to reduce this loss on next evaluation

E.g. Binary cross entropy loss function:
I Default loss function for binary classification problems
I Calculates a score between [0, 1] that summarizes average difference between

true and predicted, and tries to minimize this score through training
I Used for jet-pretraining model

E.g. Mean absolute error (MAE) loss function:
I Calculates average absolute difference between true and predicted
I Often most appropriate in regression problems where target distributions are

mostly Gaussian but may have outliers, since it punishes larger mistakes from
outliers less harshly than, for example, MSE

I Used for TRecNet models
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Training Features
Optimizer

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Optimizer: Method or algorithm by which we change weights of network in
order to locate minima of loss function

E.g. Stochastic gradient descent (SGD):

I Estimates gradient of loss function with randomly selected subset of data
I Uses estimated gradient to choose direction to move in search space (with

step size determined by learning rate)

E.g. Adam:

I Particular type of SGD where learning rate is non-static – individual adaptive
learning rates are computed for different parameters from estimates of first
and second moments of the gradients
Used for TRecNet models and jet pre-training

Jenna Chisholm (UBC) Top Reconstruction with Deep Learning June 2023 13 / 13



Training Features
Learning Rate

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Learning rate: Step size that optimization algorithm uses at each iteration to
move towards the minima

I Parameter that can be fine-tuned to optimize model performance
I Can modulate how learning rate changes over training

E.g. Polynomial decay rate:

I Begin with larger learning rate → take larger steps and train faster
I Gradually move to smaller learning rate → take smaller steps and fine-tune

optimization
I Used for TRecNet and jet pre-training (which slight differences)
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Training Features
Activation Function

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Activation function: Defines how weighted sum of input to a node is
transformed to output from that node
I Allows network to handle more complex patterns and non-linear problems →

large impact on capability and performance of network
I Can have different activation functions for different layers

E.g. ReLU (Rectified Linear Function): max(0, x)
I Popular for hidden layers
I Easy to implement, quick, computationally light, and less susceptible to the

vanishing gradient problem
I Used for almost all of our hidden layers

E.g. Sigmoid (or Logistic) Function: 1/(1 + e−x)
I Popular for hidden and output layers
I Use for output from jet classifier

Jenna Chisholm (UBC) Top Reconstruction with Deep Learning June 2023 13 / 13



Training Features
Regularization

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Regularization: Techniques to prevent over- or under-fitting

E.g. Early stopping (monitor=val loss,patience=10):

I End training after 10 epochs of no improvement in loss for the validation data
I Used for TRecNet and jet pre-training
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Training Features
Events and Batch Size

Training Feature TRecNet Models Jet Pre-training
Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 10−3 to 5 × 10−5 with Polynomial decaying from 10−2 to 5 × 10−4 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val loss, patience=10) Early stopping (monitor=val loss, patience=10)

Events, Batch Size ∼23 Million, 1000 ∼23 Million, 1000

Events: 33 million

I 70% to training
I 15% to validation
I 15% to testing

Batch Size: Number of events processed before model is updated

I Used batch size = 1000 for all models
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Neural Networks
Training Loss
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Neural Networks
TRecNet with Different Numbers of Jets
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Jet Pre-Training
Jet Matching Algorithm

For a match (matched jet tag = 1) between detector-level jet and
parton-level decay product:

I Require jet has the same flavour as the decay product
I Require ∆R =

√
∆φ2 + ∆η2 < 0.4

85% of detector-level jets were matched to a parton-level decay product, with
∼100% having a reasonable fractional ∆pT
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Jet Pre-Training
Jet Pre-Training Response Matrices
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Hadronic Top Results
Response Matrices

KLFitter
(6 jets flag)
(LL > −52

→ 82%):

TRecNet+ttbar
+JetPretrain-

Unfrozen
(No Cuts

→ 100%):

(a) Hadronic Top pT (b) Hadronic Top η (c) Hadronic Top φ

TRecNet+ttbar+JPU is more diagonal than KLFitter =⇒ improved precision!
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Hadronic Top Results
Resolution and Residuals

TRecNet+ttbar+JPU is more narrow and less skewed than KLFitter =⇒ improved precision!
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