Reconstruction of Semi-Leptonic Top Anti-top Pair Production with Deep Learning at ATLAS

Jenna Chisholm
Supervisor: Alison Lister

THE UNIVERSITY OF BRITISH COLUMBIA Vancouver, British Columbia, Canada

June 2023

The Top Quark

ullet Heaviest known fundamental particle ($m_t pprox 172.5 {
m GeV})$

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass
- \bullet Extremely short lifetime ($\sim 5 \times 10^{-25} \text{s})$

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass
- \bullet Extremely short lifetime ($\sim 5 \times 10^{-25} s) \rightarrow$ Faster than hadronization!

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass
- Extremely short lifetime ($\sim 5 \times 10^{-25} s$) \rightarrow Faster than hadronization!
 - lacktriangle Decays weakly (t \rightarrow Wb), before hadronization can occur

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass
- Extremely short lifetime ($\sim 5 \times 10^{-25} s$) \rightarrow Faster than hadronization!
 - Decays weakly (t→Wb), before hadronization can occur
 - Only place to study properties of a "bare" quark

- Heaviest known fundamental particle ($m_t \approx 172.5 \text{GeV}$)
 - ▶ First place a new particle could be observed, particularly if it couples to mass
- \bullet Extremely short lifetime ($\sim 5 \times 10^{-25} s) \rightarrow$ Faster than hadronization!
 - Decays weakly (t→Wb), before hadronization can occur
 - ▶ Only place to study properties of a "bare" quark
 - Precise measurements enhance our sensitivity to possible beyond SM effects

Top-Antitop Pair Production (ttbar)

• Top quark decays to b and W \sim 99% of the time

- Top quark decays to b and W \sim 99% of the time
- W decays **hadronically** with \sim 70% branching ratio and leptonically with \sim 30%

- Top quark decays to b and W \sim 99% of the time
- W decays hadronically with $\sim 70\%$ branching ratio and **leptonically** with $\sim 30\%$

- Top quark decays to b and W \sim 99% of the time
- W decays hadronically with $\sim\!70\%$ branching ratio and leptonically with $\sim\!30\%$

- Top quark decays to b and W \sim 99% of the time
- W decays hadronically with $\sim 70\%$ branching ratio and leptonically with $\sim 30\%$
- Focus on semi-leptonic decays (~30% branching ratio)

Objective: $t\bar{t}$ Reconstruction

Algorithms:

- Well-established and widely used
- E.g. Kinematic Likelihood Fitter (KLFitter), TtresChi2 (Chi2), and PseudoTop (PT)
- Determines best permutation of detector-level jets to particle-level jets by:
 - Employing kinematic constraints (assuming a four-jet system)
 - Sometimes aiming to maximize a likelihood or minimize a chi-squared
- Reconstruct the top and anti-top
 4-vectors from this permutation

Objective: $t\bar{t}$ Reconstruction

Algorithms:

- Well-established and widely used
- E.g. Kinematic Likelihood Fitter (KLFitter), TtresChi2 (Chi2), and PseudoTop (PT)
- Determines best permutation of detector-level jets to particle-level jets by:
 - Employing kinematic constraints (assuming a four-jet system)
 - Sometimes aiming to maximize a likelihood or minimize a chi-squared
- Reconstruct the top and anti-top
 4-vectors from this permutation

Deep Neural Networks (DNNs):

- Determines weights and functions (through training) that map typical detector-level objects to the expected parton-level objects
- Potentially more precise, more efficient, and less model dependant
- 3 slight variations we're working on: TRecNet, TRecNet+ttbar, and TRecNet+ttbar+JetPretrain

Objective: $t\bar{t}$ Reconstruction

Algorithms:

- Well-established and widely used
- E.g. Kinematic Likelihood Fitter (KLFitter), TtresChi2 (Chi2), and PseudoTop (PT)
- Determines best permutation of detector-level jets to particle-level jets by:
 - Employing kinematic constraints (assuming a four-jet system)
 - Sometimes aiming to maximize a likelihood or minimize a chi-squared
- Reconstruct the top and anti-top
 4-vectors from this permutation

Deep Neural Networks (DNNs):

- Determines weights and functions (through training) that map typical detector-level objects to the expected parton-level objects
- Potentially more precise, more efficient, and less model dependant
- 3 slight variations we're working on: TRecNet, TRecNet+ttbar, and TRecNet+ttbar+JetPretrain

Goal:

Design a DNN to reconstruct $t\bar{t}$ better than current algorithms!

"Truth" / "Simulations"

- Generate hard-scattering with POWHEG (parton-level)
- Simulate parton shower and hadronization with *Pythia8* (particle-level)

"Truth" / "Simulations"

- Generate hard-scattering with POWHEG (parton-level)
- Simulate parton shower and hadronization with Pythia8 (particle-level)

- Detector response simulated by Geant4 (detector/reco-level)
 - ▶ Jets: (p_T, η, ϕ, E) , b_{tag}
 - Lepton: $(p_{T_{lep}}, \eta_{lep}, \phi_{lep})$ Missing Transverse Energy:
 - Missing Transverse Energy: E_T, ϕ_{E_T}

"Truth" / "Simulations"

- Generate hard-scattering with POWHEG (parton-level)
- Simulate parton shower and hadronization with Pythia8 (particle-level)

"Measured" / "Reco Input"

- Detector response simulated by Geant4 (detector/reco-level)
 - Jets: (p_T,η,φ,E), b_{tag}

 - ▶ Lepton: (p_{T_{lep}}, η_{lep}, φ_{lep})
 ▶ Missing Transverse Energy: E_T, ϕ_{F_T}

"Predictions" / "Reco Output"

- Previous fitting algorithms vs. Top Reconstruction Neural Network
 - Hadronic Top: $(p_{T_{t_h}}, \eta_{t_h}, \phi_{t_h}, m_{t_h})$
 - ▶ Leptonic Top: $(p_{T_{t_i}}, \eta_{t_i}, \phi_{t_i}, m_{t_i})$
 - ▶ ttbar: $(p_{T,\bar{t}}, \eta_{t\bar{t}}, \phi_{t\bar{t}}, m_{t\bar{t}})$

"Truth" / "Simulations"

- Generate hard-scattering with POWHEG (parton-level)
- Simulate parton shower and hadronization with Pythia8 (particle-level)

"Measured" / "Reco Input"

- Detector response simulated by Geant4 (detector/reco-level)
 - ▶ Jets: (p_T, η, ϕ, E) , b_{tag}
 - ▶ Lepton: (p_{T_{lep}}, η_{lep}, φ_{lep})
 ▶ Missing Transverse Energy:
 - E_T, ϕ_{F_T}

"Predictions" / "Reco Output"

- Previous fitting algorithms vs. Top Reconstruction Neural Network
 - Hadronic Top: $(p_{T_{t_h}}, \eta_{t_h}, \phi_{t_h}, m_{t_h})$
 - ▶ Leptonic Top: $(p_{T_{t_l}}, \eta_{t_l}, \phi_{t_l}, m_{t_l})$
 - ▶ ttbar: $(p_{T,\bar{t}}, \eta_{t\bar{t}}, \phi_{t\bar{t}}, m_{t\bar{t}})$

Iteration #1: TRecNet (TRN)

 TDDense layers treat each jet as a separate "slice"

- TDDense layers treat each jet as a separate "slice"
- "Jet Classifier" learns which jets are relevant to $t\bar{t}$ process

- TDDense layers treat each jet as a separate "slice"
- "Jet Classifier" learns which jets are relevant to $t\bar{t}$ process
- Jets "slices" are multiplied by weights from "Jet Classifier"

- TDDense layers treat each jet as a separate "slice"
- "Jet Classifier" learns which jets are relevant to $t\bar{t}$ process
- Jets "slices" are multiplied by weights from "Jet Classifier"
- Predicts leptonic 4-vectors (t_I, W_I) first, since their classification is easier, and then uses this information to help inform predictions on the hadronic 4-vectors (t_h, W_h)

Iteration #2: TRecNet+ttbar (TRN+ttbar)

- TDDense layers treat each jet as a separate "slice"
- "Jet Classifier" learns which jets are relevant to $t\bar{t}$ process
- Jets "slices" are multiplied by weights from "Jet Classifier"
- Predicts leptonic 4-vectors (t_I, W_I) first, since their classification is easier, and then uses this information to help inform predictions on the hadronic 4-vectors (t_h, W_h) and tt variables

$\overline{\text{Iteration } \#3: \ \text{TRecNet} + \text{ttbar} + \text{JetPretrainUnfrozen } (\text{TRN} + \text{ttbar} + \text{JPU})}$

TRecNet+ttbar+JPU is more diagonal than KLFitter ⇒ improved precision!

Hadronic p_T Resolution

TRecNet+ttbar+JPU is more narrow and less skewed than KLFitter ⇒ improved precision!

Hadronic p_T Resolutions at Different Momenta

- Neural networks completely remove the extra bump at high p_T !
 - \triangleright Jets become more difficult to resolve at high p_T
 - No longer a one-to-one match between parton-level quarks and detector-level jets
 - ▶ Neural networks use all jet info, but algorithms use only best permutation of 4 out of 6

 $p_{T} < 100 \text{ GeV}$

 $250 < p_T < 500 \text{ GeV}$

 $p_{T} > 500 \text{ GeV}$

Leptonic p_T Resolutions at Different Momenta

- No extra bump at high p_T on leptonic side!
 - ▶ Only one b-jet to resolve
- But neural networks still have better resolution over range of p_T

 $p_T < 100 \text{ GeV}$

 $250 < p_T < 500 \text{ GeV}$

 $p_{T} > 500 \; {\rm GeV}$

Results

$m_{t\bar{t}}$ Resolution

- Neural network improves upon reconstruction of mass of $t\bar{t}$ system
- ullet Adding $tar{t}$ variables to the neural network helped improve precision for $m_{tar{t}}$

Conclusions and Outlook

- Advantages of the neural networks:
 - ▶ Appear to improve upon results of from likelihood-based algorithms
 - ► Perform more efficiently
 - ► Flexibility to handle events with more or less than 4 jets (and thus performs better than previous methods in the boosted topology)

Conclusions and Outlook

- Advantages of the neural networks:
 - ▶ Appear to improve upon results of from likelihood-based algorithms
 - ► Perform more efficiently
 - ► Flexibility to handle events with more or less than 4 jets (and thus performs better than previous methods in the boosted topology)
- Future possibilities and outlook:
 - Investigating impact of number of input jets
 - ► Hypertuning to further fine-tune model
 - Measure model dependency
 - Include systematics to obtain a more quantitative measure of the neural network's improvement

Thanks to . . .

- Dr. Alison Lister
- Dr. Zhengcheng Tao
- Tao Zhang
- The ATLAS Collaboration
- NSERC

Parton-level vs. Particle-level vs. Detector-level

- Parton-level: Only includes perturbative matrix element calculations
 - ► E.g. hard scattering events generated by *POWHEG*
- Particle-level: Includes both perturbative and non-perturbative matrix element calculations
 - ▶ E.g. parton shower/hadronization components handled by Pythia8
- Detector-level: What we measure
 - ▶ E.g. data or simulated data from *Geant4*
 - ▶ The top reconstruction algorithms we're using are at this level

Resolved Final State

Boosted Final State

Increasing Transverse Momentum

Reconstruction Algorithms

Kinematic Likelihood Fitter (KLFitter)

 Best permutation of jets determined using kinematics and likelihood calculations:

$$\mathcal{L} = \mathcal{B}(m_{q_1q_2q_3}|m_t, \Gamma_t) \cdot \mathcal{B}(m_{q_1q_2}|m_W, \Gamma_W) \cdot \mathcal{B}(m_{q_4\ell_{\nu}}|m_t, \Gamma_t) \cdot \mathcal{B}(m_{\ell\nu}|m_W, \Gamma_W) \cdot \\ \prod_{i=1}^4 W_{\text{jet}}(E_{\text{jet},i}^{\text{meas}}|E_{\text{jet},i}) \cdot W_{\ell}(E_{\ell}^{\text{meas}}|E_{\ell}) \cdot W_{\text{miss}}(E_x^{\text{miss}}|p_x^{\nu}) \cdot W_{\text{miss}}(E_y^{\text{miss}}|p_y^{\nu})$$

- ightharpoonup Breit-Wigner terms $(\mathcal{B}) o ext{quantify agreement of known masses with measured decay products}$
- ▶ Transfer function terms (W) → quantify agreement of fitted energies and missing transverse momentum components with measured values (detector-specific and representative of experimental resolutions)
- Likelihood calculated for each possible association of detector-level jets to particle-level jets, where m_t , $E_{jet,i}$, E_ℓ , and \vec{p}_ν are treated as parameters varied to maximize the likelihood
- Retain permutation with highest likelihood (called the "best permutation")
- ullet Can make cuts on $\log \mathcal{L}$ to separate well- and poorly-reconstructed events

Breit-Wigner Function:

$$\mathcal{B}(E|M,\Gamma) = \frac{k}{(E^2 - M^2)^2 + M^2\Gamma^2}$$

where.

$$k = \frac{2\sqrt{2}M\Gamma\gamma}{\pi\sqrt{M^2 + \gamma}}$$

and

$$\gamma = \sqrt{M^2(M^2 + \Gamma^2)}$$

Transfer Function:

$$W(E) = \frac{Y(E)}{X(E)} \bigg|_{\text{initial conditions} = 0}$$

where,

Y = laplace transform of output

and

X = laplace transform of input

Reconstruction Algorithms

TtresChi2

 Best permutation of jets determined using kinematics and chi-squared calculation:

$$\chi^{2} = \left[\frac{m_{jj} - m_{W_{h}}}{\sigma_{W_{h}}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{t_{h} - W_{h}}}{\sigma_{t_{h} - W_{h}}}\right]^{2} + \left[\frac{m_{b\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,b\ell\nu}) - (p_{T,t_{h}} - p_{T,t_{\ell}})}{\sigma_{p_{T,t_{h}} - p_{T,t_{\ell}}}}\right]^{2}$$

- Constraint on dijet mass to form hadronic W
- Constraint on three jets to form hadronic top contribution of hadronic W subtracted to decouple first two terms, since m_{ii} and m_{iib} are highly correlated
- Constraint on remaining jet, lepton and neutrino (met) to form leptonic top
- Constraint on transverse momentum balance between the two top quarks (p_T should be similar, as expected in a resonance)
- Expected values of parameters m_{W_h} , $m_{t_h-W_h}$, m_{t_ℓ} , $p_{T,t_h}-p_{T,t_\ell}$ as well as their uncertainties σ_{W_h} , $\sigma_{t_h-W_h}$, σ_{t_ℓ} , $\sigma_{p_{T,t_h}-p_{T,t_\ell}}$ are obtained from the simulated Z' events by matching reconstructed objects to truth partons
- Can make cuts on χ^2 to separate well- and poorly-reconstructed events Jenna Chisholm (UBC)

Reconstruction Algorithms

PseudoTop

- Uses lepton, jet, and missing transverse energy measurements, as well as known mass of W boson
- \bullet Only two b-tagged jets with highest p_T are considered part of the system

Algorithm:

- 1. Reconstructs neutrino 4-momentum
 - \triangleright p_x and p_y obtaining from met
 - $ightharpoonup p_z$ calculated by conservation of momentum
- 2. Reconstruct leptonic W from lepton and neutrino
- 3. Reconstruct leptonic top from leptonic W and b-tagged jet closest in $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ to lepton
- 4. Reconstruct hadronic W from the two light-flavoured jets whose invariant mass is closest to mass of W boson
- 5. Reconstruct hadronic top from hadronic W and remaining b-tagged jet

Pre-Processing Trials

- Model performance was evaluated on validation data using mean-squared error ($mse = \langle truth prediction \rangle^2$)
- Mean/variance scaling $\left(x_i^{\text{scaled}} = \frac{x_i \bar{x}}{\sigma(x)}\right)$ vs. mean/max scaling $\left(x_i^{\text{scaled}} = \frac{x_i \bar{x}}{\max(|x|)}\right)$
 - Standard procedure for allowing the network to focus on each variable equally
- Encoding ϕ with $\sin(\phi)$ and $\cos(\phi)$ vs. triangle wave of $\sin(\phi)$ and $\cos(\phi)$ vs. p_x and p_y
 - ▶ Former two produced edge peaks that the network has trouble predicting
- Boxcox transformation of p_T $\left(p_T = \frac{p_T^{\lambda} 1}{\lambda}\right)$ vs. $\left(p_x, p_y\right)$ vs. p_T
 - **b** Boxcox did better on average, but poorly reconstructed low p_T events
 - $ightharpoonup p_x$ and p_y difficult to predict, resulting in large compounding error for p_T

Pre-Processing Procedure

Final procedure:

- ▶ Encode ϕ_T with $\sin(\phi_T)$, $\cos(\phi_T)$ and all other ϕ with p_x and p_y
- ▶ All inputs (except b_{tag}) undergo mean/max scaling
- ▶ Model predicts (p_T, p_x, p_y, η, m) for top quarks and Ws in mean/max scale
- lacktriangle Invert mean/max scaling and ϕ encoding to return predictions to original scale

ATLAS Work in Progress

Loss Function

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Loss function: quantifies error for current state of model want to change weights to reduce this loss on next evaluation
- E.g. Binary cross entropy loss function:
 - Default loss function for binary classification problems
 - ightharpoonup Calculates a score between [0,1] that summarizes average difference between true and predicted, and tries to minimize this score through training
 - ▶ Used for jet-pretraining model
- E.g. Mean absolute error (MAE) loss function:
 - ▶ Calculates average absolute difference between true and predicted
 - Often most appropriate in regression problems where target distributions are mostly Gaussian but may have outliers, since it punishes larger mistakes from outliers less harshly than, for example, MSE
 - Used for TRecNet models

Optimizer

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Optimizer: Method or algorithm by which we change weights of network in order to locate minima of loss function
- E.g. Stochastic gradient descent (SGD):
 - Estimates gradient of loss function with randomly selected subset of data
 - Uses estimated gradient to choose direction to move in search space (with step size determined by learning rate)
- E.g. Adam:
 - Particular type of SGD where learning rate is non-static individual adaptive learning rates are computed for different parameters from estimates of first and second moments of the gradients
 - Used for TRecNet models and jet pre-training

Learning Rate

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Learning rate: Step size that optimization algorithm uses at each iteration to move towards the minima
 - ▶ Parameter that can be fine-tuned to optimize model performance
 - ► Can modulate how learning rate changes over training
- E.g. Polynomial decay rate:
 - lacktriangle Begin with larger learning rate ightarrow take larger steps and train faster
 - ightharpoonup Gradually move to smaller learning rate ightharpoonup take smaller steps and fine-tune optimization
 - Used for TRecNet and jet pre-training (which slight differences)

Activation Function

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Activation function: Defines how weighted sum of input to a node is transformed to output from that node
 - ➤ Allows network to handle more complex patterns and non-linear problems → large impact on capability and performance of network
 - ► Can have different activation functions for different layers
- E.g. ReLU (Rectified Linear Function): max(0, x)
 - Popular for hidden layers
 - Easy to implement, quick, computationally light, and less susceptible to the vanishing gradient problem
 - Used for almost all of our hidden layers
- E.g. Sigmoid (or Logistic) Function: $1/(1+e^{-x})$
 - Popular for hidden and output layers
 - ▶ Use for output from jet classifier

Regularization

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Regularization: Techniques to prevent over- or under-fitting
- E.g. Early stopping (monitor=val_loss,patience=10):
 - ▶ End training after 10 epochs of no improvement in loss for the validation data
 - ▶ Used for TRecNet and jet pre-training

Events and Batch Size

Training Feature	TRecNet Models	Jet Pre-training
Loss Function	Mean absolute error	Binary cross entropy
Optimizer	Adam	Adam
Learning Rate	Polynomial decaying from 10^{-3} to 5×10^{-5} with power of 0.25 and decay steps of 10000	Polynomial decaying from 10^{-2} to 5×10^{-4} with power of 0.25 and decay steps of 10000
Activation Function	ReLU excpet for one sigmoid layer and linear output layer	ReLU excpet for sigmoid output layer
Regularization	Early stopping (monitor=val_loss, patience=10)	Early stopping (monitor=val_loss, patience=10)
Events, Batch Size	~23 Million, 1000	~23 Million, 1000

- Events: 33 million
 - ▶ 70% to training
 - ▶ 15% to validation
 - ▶ 15% to testing
- Batch Size: Number of events processed before model is updated
 - ▶ Used batch size = 1000 for all models

Training Loss

TRecNet with Different Numbers of Jets

Jet Pre-Training

Jet Matching Algorithm

- For a match (matched jet tag = 1) between detector-level jet and parton-level decay product:
 - ▶ Require jet has the same flavour as the decay product
 - Require $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.4$
- 85% of detector-level jets were matched to a parton-level decay product, with ${\sim}100\%$ having a reasonable fractional Δp_T

Jet Pre-Training

Jet Pre-Training Response Matrices

Hadronic Top Results

Response Matrices

 $\mathsf{TRecNet} + \mathsf{ttbar} + \mathsf{JPU}$ is more diagonal than $\mathsf{KLFitter} \implies \mathsf{improved}$ precision!

Hadronic Top Results

Resolution and Residuals

TRecNet+ttbar+JPU is more narrow and less skewed than KLFitter ⇒ improved precision!