Searching for a Strongly Interacting Dark Sector at MoEDAL **MAPP**

Shafakat Arifeen, ¹ James Pinfold, ² Pierre-P. A. Ouimet, ¹ Michael Staelens ³

June 19, 2023

¹ Department of Physics, University of Regina

²Department of Physics, University of Alberta

³Instituto de Física Corpuscular (IFIC), Universitat de València-CSIC

Schedule

- 1 Introduction
- 2 Pion-Like Dark Matter
- 3 The Madgraph Model
- 4 Drell-Yan Process
- 5 Preliminary Projected Exclusion Limits
- 6 Future Work

Introduction

•00000000

Introduction

Pion-Like Dark Matter The Madgraph Model Preliminary Projected Exclusion Limits Drell-Yan Process Future Work

MoEDAL Experiment

Introduction

00000000

MoEDAL stands for Monopoles and Exotics Detector At the LHC

MoEDAL is the first dedicated search detector at the LHC

MoEDAL Experiment

MoEDAL stands for Monopoles and Exotics Detector At the LHC

- MoEDAL is the first dedicated search detector at the LHC
- World's best limits on the existence of singly and multiply charged MMs

MoEDAL Experiment

MoEDAL stands for Monopoles and Exotics Detector At the LHC

- MoEDAL is the first dedicated search detector at the LHC
- World's best limits on the existence of singly and multiply charged MMs
- Carried out first-ever searches for Spin-1 MMs, dyons, MMs produced in heavy-ion collisions via Schwinger mechanism

MoEDAL Experiment

MoEDAL stands for Monopoles and Exotics Detector At the LHC

- MoFDAL is the first dedicated search detector at the LHC
- World's best limits on the existence of singly and multiply charged MMs
- Carried out first-ever searches for Spin-1 MMs, dyons, MMs produced in heavy-ion collisions via Schwinger mechanism
- Is complementary to General Purpose Detectors such as ATLAS and CMS.

MoEDAL-MAPP Experiment

Introduction

00000000

International Journal of Modern Physics A, September 2014, Vol. 29, No. 23

Pion-Like Dark Matter The Madgraph Model Preliminary Projected Exclusion Limits Drell-Yan Process Future Work

MoEDAL-MAPP

Introduction

000000000

MAPP stands for MoEDAL Apparatus for Penetrating Particles

Designed to search for FIPs: mCPs and heavy neutrinos with an anomalously large EDM.

MoEDAL-MAPP

MAPP stands for **MoEDAL Apparatus** for **Penetrating Particles**

- Designed to search for FIPs: mCPs and heavy neutrinos with an anomalously large EDM.
- Sensitivity to charged and neutral LLPs

MoEDAL-MAPP

MAPP stands for MoEDAL Apparatus for Penetrating Particles

- Designed to search for FIPs: mCPs and heavy neutrinos with an anomalously large EDM.
- Sensitivity to charged and neutral LLPs
- The main LHC experiments are not optimized for HIPs, FIPs.

MoEDAL-MAPP1

- Located at UA83, about 100m from the LHCb IP at about 7° from the beam axis
- 400 scintillator bars $(10 \times 10 \times 75 cm^3)$ readout by PMTs
- Each particle going through covers 3m of scintillator

MAPPing the Dark Sector

Introduction

000000000

Pion-Like Dark Matter OOOO The Madgraph Model OOO Pion-Like Dark Matter OOOO Pion-Like Dark Matter OOOO Process Preliminary Projected Exclusion Limits Future Work OOOOOOOOO

mCPs

Introduction 000000000

> Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.

Pion-Like Dark Matter The Madgraph Model Drell-Yan Process Preliminary Projected Exclusion Limits

mCPs

Introduction

000000000

- Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.
- \blacksquare A standard mCP model would have a massless U'(1) gauge field: the dark photon, coupling to $B^{\mu\nu}$

Future Work

Introduction 000000000 **mCPs**

Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.

- \blacksquare A standard mCP model would have a massless U'(1) gauge field: the dark photon, coupling to $B^{\mu\nu}$
- Have a massive dark fermion ψ_{mCP} , with a mass of m_{mCP} that couples to A'_{μ} , with a charge of e'

Future Work

mCPs

- Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.
- A standard mCP model would have a massless U'(1) gauge field: the dark photon, coupling to $B^{\mu\nu}$
- Have a massive dark fermion ψ_{mCP} , with a mass of m_{mCP} that couples to A'_{μ} , with a charge of e'
- Would have a kinetic mixing term in the Lagrangian:

$$\mathcal{L}_{ extit{mix}} = -rac{\kappa}{2} extit{B}_{\mu
u} extit{A}^{\prime\mu
u}$$

mCPs

- Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.
- A standard mCP model would have a massless U'(1) gauge field: the dark photon, coupling to $B^{\mu\nu}$
- Have a massive dark fermion ψ_{mCP} , with a mass of m_{mCP} that couples to A'_{ij} , with a charge of e'
- Would have a kinetic mixing term in the Lagrangian:

$$\mathcal{L}_{mix} = -rac{\kappa}{2}B_{\mu
u}A^{\prime\mu
u}$$

One of the main possible production mechanisms for mCPs at the LHC studied by MAPP is the Drell-Yan mechanism.

mCPs

Introduction 000000000

- Mini-charged particles (mCPs) are hypothetical non-SM particles that have a fraction of the charge of electron e.
- A standard mCP model would have a massless U'(1) gauge field: the dark photon, coupling to $B^{\mu\nu}$
- Have a massive dark fermion ψ_{mCP} , with a mass of m_{mCP} that couples to A'_{ij} , with a charge of e'
- Would have a kinetic mixing term in the Lagrangian:

$$\mathcal{L}_{ extit{mix}} = -rac{\kappa}{2} extit{B}_{\mu
u} extit{A}^{\prime\mu
u}$$

- One of the main possible production mechanisms for mCPs at the LHC studied by MAPP is the Drell-Yan mechanism.
- Another form of mCPs MAPP is looking for is Strongly Interacting Massive **P**articles

Strongly Interacting Dark Matter is motivated from the following properties:

Self-Interactions

Strongly Interacting Dark Matter is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions

Introduction

000000000

Pion-Like Dark Matter

Strongly Interacting Dark Matter is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions
- **New Observables**

10 / 36

Introduction

000000000

Pion-Like Dark Matter

Introduction 00000000

Strongly Interacting Dark Matter is motivated from the following properties:

- Self-Interactions
- Naturalness and Suppressed Interactions
- New Observables

A small minicharged DM subcomponent (0.4%) may resolve the anomalous 21cm hydrogen absorption signal reported by the EDGES Collaboration

G. D. Kribs and E. T. Neil, Int. J. Mod. Phys. A 31 (2016) no.22, 1643004 [arXiv:1604.04627 [hep-ph]]. Berling, Hopper, Krnjaic, McDermott, Phys. Rev. Lett. 121, 011102 (2018)

Types of SIMPs

Strongly Interacting Dark Matter have various types:

- Pion-like DM: $m_a << \Lambda_D$
- Quarkonia-like DM: $m_a >> \Lambda_D$
- Intermediate regime $(m_q \sim \Lambda_D)$ or Mixed regime $(m_{q1} < \Lambda_D < m_{q2})$
- Baryon-like DM
- Dark Glueballs
- Many more...

Our research focuses on Pion-like Dark Matter.

Introduction

Pion-Like Dark Matter

Meson Dark Matter: Pion-Like

0000

A Lagrangian for a Pion-Like DM is:

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[(D_{\mu}U)^{\dagger}D^{\mu}U] + \frac{Bf_{\pi}^2}{2} \operatorname{Tr}(M^{\dagger}U + U^{\dagger}M)$$

$$+ \mathcal{L}_{G'} + \mathcal{L}_{WZW} + \mathcal{L}_{mix} + \dots$$
(1)

S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277 [hep-ph/0210398].

Kinetic Mixing

0000

Instead of adding **one** massless U'(1) gauge field (Holdom phase), we add two fields:

- \blacksquare one massless U'(1) gauge field: A'_{μ}
- one **massive** $SU'(2)_W$ gauge field: Z'_{μ}

Future Work

Kinetic Mixing

Instead of adding **one** massless U'(1) gauge field (Holdom phase), we add two fields:

- lacksquare one massless U'(1) gauge field: A'_{μ}
- \blacksquare one **massive** $SU'(2)_W$ gauge field: Z'_u

So we would have a kinetic mixing term as:

$$\mathcal{L}_{mix} = -\frac{\kappa}{2} B_{\mu\nu} B'_{\mu\nu} \tag{2}$$

Kinetic Mixing

Instead of adding **one** massless U'(1) gauge field (Holdom phase), we add two fields:

- lacksquare one massless U'(1) gauge field: A'_{μ}
- \blacksquare one **massive** $SU'(2)_W$ gauge field: Z'_{μ}

So we would have a kinetic mixing term as:

$$\mathcal{L}_{mix} = -\frac{\kappa}{2} B_{\mu\nu} B'_{\mu\nu} \tag{2}$$

Where $B'_{\mu}=\cos heta_{W'}A'_{\mu}-\sin heta_{W'}Z'_{\mu}$

Izaguirre, E. and Yavin, I., "New window to millicharged particles at the LHC", Physical Review D, vol. 92, no. 3, 2015.

WZW Lagrangian

000

Pion-Like Dark Matter

The Wess-Zumino-Witten Lagrangian is:

$$\mathcal{L}_{WZW} = \frac{2N_C}{15\pi^2 f_5^{\pi}} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[\Pi \partial_{\mu} \Pi \partial_{\nu} \Pi \partial_{\rho} \Pi \partial_{\sigma} \Pi] \tag{3}$$

The Wess-Zumino-Witten term allows for $3 \rightarrow 2$ annihilation process, which results in DM self-interactions and helps explaining the galactic structure anomaly and DM abundance.

000

Pion-Like Dark Matter

The Wess-Zumino-Witten Lagrangian is:

$$\mathcal{L}_{WZW} = \frac{2N_C}{15\pi^2 f_\pi^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[\Pi \partial_\mu \Pi \partial_\nu \Pi \partial_\rho \Pi \partial_\sigma \Pi]$$
 (3)

The Wess-Zumino-Witten term allows for $3 \rightarrow 2$ annihilation process, which results in DM self-interactions and helps explaining the galactic structure anomaly and DM abundance. It also gives us the $\pi_D \gamma_D \gamma_D$ vertex upon including the gauge fields, specifically from the term:

$$irac{n e^2}{48\pi^2}\epsilon^{\mu
u
ho\sigma}\partial_
u A_
ho A_\sigma {\it Tr}[2Q^2(U\partial_\mu U^\dagger-U^\dagger\partial_\mu U)-QU^\dagger Q\partial_\mu U+QUQ\partial_\mu U^\dagger]$$

Introduction

The Madgraph Model

•000

The Madgraph Model

Future Work Pion-Like Dark Matter The Madgraph Model Drell-Yan Process Preliminary Projected Exclusion Limits 000

Madgraph and Feynrules

We use two key software packages for evaluating our model:

Feynrules is a Mathematica package, which is used for defining parameters and interactions for quantum field theories, especially physics beyond the standard model. **Madgraph** is a Monte Carlo event generator which is used to simulate particle interactions to generate cross-section and decay rates, as well as study the kinematics of these processes.

A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 185, 2250 (2014), arXiv:1310.1921 [hep-ph]

Alwall, Johan, et al. "MadGraph 5; Going Beyond," Journal of High Energy Physics, vol. 2011, no. 6, June 2011, Crossref, https://doi.org/10.1007/jhep06(2011)128.

Pion-Like Dark Matter The Madgraph Model Drell-Yan Process Preliminary Projected Exclusion Limits Future Work

Sanity and Validity Checks

We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.

Sanity and Validity Checks

- We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.
- How do we know the cross-sections we are generating are valid?

Future Work

on Pion-Like Dark Matter 0000 The Madgraph Model 0000 Prell-Yan Process 00000 Prell-yan Process 0000 Prell-yan Process 00000 Prell-yan Process 0000 Prell-yan P

Sanity and Validity Checks

- We created a Feynrules model for the pion-like DM model and imported the UFO file to Madgraph to generate cross-sections.
- How do we know the cross-sections we are generating are valid?
- We computed the analytical cross-sections of certain processes, and compared it to the cross-sections generated by Madgraph.

Example: Ratio vs Energy for $\pi_D^+ + \pi_D^- \to \pi_D^0 + \pi_D^0$

For $\pi_D^+ + \pi_D^- \to \pi_D^0 + \pi_D^0$, the analytical cross-section is:

$$\sigma = \frac{E^2}{4\pi f_{\pi}^4} \tag{4}$$

Example: Ratio vs Energy for $\pi_D^+ + \pi_D^- \to \pi_D^0 + \pi_D^0$

For $\pi_D^+ + \pi_D^- \to \pi_D^0 + \pi_D^0$, the analytical cross-section is:

$$\sigma = \frac{E^2}{4\pi f_\pi^4} \tag{4}$$

Ratio of analytic cross-section / MG5 cross-section

Figure: Ratio vs beam Energy of the process $\pi_D^+\pi_D^-\to\pi_D^0\pi_D^0$

Future Work

Drell-Yan Process

We want to study Drell-Yan production to two charged dark pions:

Comparison Plots with standard mCP

We compare the cross-section of the Drell-Yan SIMP vs Drell-Yan of standard mCP:

Future Work

Preliminary Projected Exclusion Limits

Finding the Qeff

We are looking for a C.L. (Confidence Level) of 95% C.L We use the following formula to solve for $Q_{\rm eff}$:

$$N_{\sigma} = \sigma Q_{\text{eff}} L A \tag{5}$$

Where $L=30 \text{fb}^{-1}$ and $A=\frac{\text{number of particles that traverse the full MAPP detector}}{\text{Total number of particles}}$

Exclusion Plot

Future Work

Include more mass ranges for the acceptance exclusion plot.

Simulate energy loss by using the full detector geometry, as well as the whole region of MoEDAL-MAPP in GEANT4

Future Work

- Include more mass ranges for the acceptance exclusion plot.
- Simulate energy loss by using the full detector geometry, as well as the whole region of MoEDAL-MAPP in GEANT4
- Include a process dominated by the WZW term: Photon fusion to three dark pions

Thank You

BACKUP

Pion-Like Dark Matter The Madgraph Model Drell-Yan Process Preliminary Projected Exclusion Limits Future Work 00000000000

MoEDAL-MAPP

Introduction 00000000

Example: Ratio vs Energy for $K_D^+ + K_D^- \rightarrow K_D^+ + K_D^-$

For $K_D^+ + K_D^- \to K_D^+ + K_D^-$, the analytical cross-section is:

$$\sigma = \frac{E^2}{12\pi^2 f_\pi^4} \tag{6}$$

Ratio of analytic cross-section / MG5 cross-section

Figure: Ratio vs beam Energy of the process $K_D^+ K_D^- \to K_D^+ K_D^-$

Sanity check for the WZW term: $\pi_D^0 o \gamma_D + \gamma_D$

To check whether we have the correct implementation of the Wess-Zumino-Witten term, we can check the generated decay rate by Madgraph to our analytics. The decay rate for $\pi_D^0 \to \gamma_D + \gamma_D$ is

$$\Gamma = \frac{\alpha^2 M_{\pi 0}^3}{64\pi^3 f_{\pi}^2} \tag{7}$$

With $f_{\pi} = 0.14$, $m_{\pi} = 0.135$, and $\alpha = \frac{g_D^2}{4\pi}$, we get

$$\Gamma = 3.86459 \times 10^{-9}$$

The decay width generated by Madgraph is

$$\Gamma = 3.865 \times 10^{-9} + 5.7 \times 10^{-18}$$

This means that our implementation of the WZW term is correct.

Vertex

The vertex of $\pi_D^+\pi_D^-Z$ is:

$$\frac{3ig_D\kappa}{2c_WF} \left(\kappa s_W^2 s_{W'} + c_W^2\kappa s_{W'} \left(-\frac{4}{3} - \frac{8}{3}s_{W'}^2\right) + s_W \left(-3.525 + \frac{8}{3}c_{W'}^2 + 3.525s_{W'}^2\right)\right) p_{\pi^-}^\mu + \dots$$

Pion-Like Dark Matter OOOO The Madgraph Model OOO OOO Pooloo Preliminary Projected Exclusion Limits Future Work OOOOOOOO●●

Quick Review of Dark Matter

Dark Matter must follow two key properties:

- Dark Matter must be stable over the lifetime of the universe
- Dark Matter must also be overall electrically neutral and effectively neutral with the Standard Model

Barletta, W. et al. .. (2014). Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities.

Meson Dark Matter: Pion-Like

Where, in the three light quark case, the meson fields are given by:

$$U = e^{i\frac{\Pi}{f}\pi}, \Pi = \pi^a \lambda^a \tag{8}$$

And

$$\frac{\Pi}{\sqrt{2}} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & \pi_+ & K_+ \\ -\pi_- & \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & K_0 \\ K_- & \bar{K}_0 & -\sqrt{\frac{2}{3}}\pi_8 \end{pmatrix}$$
(9)

And M is the mass matrix

References for the Exclusion Plot

SLAC mQ (The Millicharged Particle Search) — Phys. Rev. Lett. 81, 1175.

LSND (Liquid Scintillator Neutrino Detector) — Phys. Rev. Lett. 122, 071801, Data from LSND used in their analysis is from Phys. Rev. D 63, 112001.

miniBooNE (Mini Booster Neutrino Experiment) — Phys. Rev. Lett. 122, 071801, Data from miniBooNe used in their analysis is from Phys. Rev. Lett. 121, 221801 and Phys. Rev. Lett. 98, 112004.

Colliders/Accelerators — The collider bounds are combined limits from beam dump experiments and LEP presented in JHEP 2000, 003. There are also two papers that I know of with bounds from CMS (but they only cover e/3 < Q < e), so they are cut-off on my versions of the limit plots.

ArgoNeuT (The Argon Neutrino Teststand) — Phys. Rev. Lett. 124, 131801.

milliQan Demonstrator — Phys. Rev. D 102, 032002.

SuperK — Phys. Rev. D 102, 115032.

CMB Noff (Indirect) - JHEP 2013, 58; JCAP 2014, 029.

