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Why self-interacting dark matter?

 CDM-only simulations agree with large-scale observations but some inconsistencies arise on small-scales
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* Possible solutions: improved observations , baryonic physics , alternative DM model

* One simple alternative to CDM is self-interacting dark matter (SIDM)

 We are interested in the impact that the presence of baryons and DM self-interactions has on direct detection
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» Historically, direct detection analyses
assume the Standard Halo Model (SHM)

* |sothermal sphere with asymptotically flat
rotation curve

* Truncated Maxwellian velocity distribution

» p,=03-04 GeV/cm?

o Vpeakz 230 km/s

¢ V.= 944 km/s

* Does the SHM remain a good assumption for SIDM?
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Hydrodynamical simulations of SIDM

« EAGLE-50
(Evolution and Assembly of GaLaxies and their Environment)
 Box size: 50 Mpc3
e QGravity treatment: Tree particle mesh
 Hydrodynamics treatment: Smooth particle hydrodynamics
« Mass/spatial resolution: ~ 10° Mq/ 10Y kpc

Credit: Shaye et al. 2015
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Hydrodynamical simulations of SIDM

« EAGLE-50 « SIDM implementation [Robertson et al. 2021]
(Evolution and Assembly of GaLaxies and their Environment)
« Box size: 50 Mpc?  Nearby DM particles randomly interact at each time step
* Gravity treatment: Tree particle mesh _ .
. Hydrodynamics treatment: Smooth particle hydrodynamics « Constant (SIDM1) and velocity-dependent (vdSIDM) cross-sections
« Mass/spatial resolution: ~ 10° Mq/ 10Y kpc
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Milky Way analogues

e Selection criteria
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* 14 SIDM1 and 17 vdSIDM halos
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Local dark matter density

» CDM and SIDM values agree with the fiducial SHM value,
with global/local estimates from observations and with
previous CDM simulations

Solar Neighbourhood

 DMO halos have lower DM density due to lack of
baryonic contraction

« DM self interactions have no significant impact on Py 100 K
pcC

DM particles | Local DM density [GeV/cm®] | DM density variation %
SIDM1 447 — 717 0.41 — 0.66 4 — 26
DMO 274 — 544 0.30 — 0.99 4 — 53
CDM 380 — 729 0.35 — 0.67 4 —141
vdSIDM 325 — 734 0.30 — 0.67 5 — 39
DMO 216 — 496 0.23 — 0.54 15— 54
CDM 373 — 729 0.34 — 0.67 4 —41
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Local Galactic frame velocity distributions
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» CDM and SIDM models agree well with SHM

* Baryonic contraction leads to higher peak speeds

* Baryons have a more significant effect compared to DM self-interactions
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Time averaged halo integrals
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Time averaged halo integrals
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v (?)
 CDM and SIDM agree well with SHM halo integral

* The presence of baryons and DM self-interactions result in small shifts of
halo integral tails to higher velocity

» L argest astrophysical uncertainty in exclusion limits are for light DM
candidates
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Summary

* We have found that the presence of DM self-interactions in hydrodynamical simulations does not have a significant
effect on the local DM distribution compared to CDM

* The presence of baryons has a more significant effect on the local distribution compared to DM self-interactions

 Additional considerations and results:

* Choice of “Solar neighbourhood” —_— * Our results are robust to different sized torii

* Generally, the local DM has noticeably larger speeds in
* Velocity distribution components E— the azimuthal direction for CDM and SIDM halos,
compared to DMO

» Galaxy morphology —_— . Iapci:(al DM density is larger for halos with more prominent
Isks

* Analysis can be applied to other simulations and additional alternative DM models (WDM, FDM, etc.)
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Cold Dark Matter

e Observational evidence

« Spiral and elliptical galaxy systematics
e Cluster mass measurements

e Structure formation

« CMB power spectrum

* CDM candidates include WIMPs, axions and MaCHOs

* .....and much more » Large-volume dark matter-only CDM simulations agree
. . with observations on Mpc scales but tension arises on
e Suggests the existence of matter that is kpc scales -
* Massive  Missing satellites - CDM predicts too many satellites

* Non-relativistic

. Stable * Core-cusp - CDM predicts cusps

* Too Big To Fail - CDM predicts too massive satellites

« CDM is a model of particles which are
characterized as having

* Formed when non-relativistic
* Very weak non-gravitational interactions

* Thus alternatives to CDM are explored ...
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