

The SuperCDMS SNOLAB Experiment

CAP congress, Fredericton, NB

Birgit Zatschler

on behalf of the SuperCDMS collaboration

22nd June 2023

Introduction to Dark Matter

- Strong evidence for DM exist within the universe.
- There is five times more DM than normal matter.

Composition of the universe

ORONTO

https://wmap.gsfc.nasa.gov

DOI: 10.1038/nature03597

Cosmic microwave background

ESA and the Planck Collaboration

NASA

Detection methods

Birgit Zatschler

Directional detectors

Josephides J 2019 WIMP Wind Infographic

- ▲ Solar system moving through galactical DM halo
- Direct DM detection channels

detectors

noble-gas

dual-phase **TPCs**

SNOLAB underground facility

- · Located in Sudbury, Canada, inside an active mine.
- Rock overburden of 2 km shields from cosmic radiation.
- Muon flux reduced by a factor of 50 million.
- · Hosting DM and neutrino experiments in need of low background environment.

Boulby (UK)

10-

 10^{-8}

https://www.snolab.ca

Total muon flux

Fréius (France)

Gran Sasso (Italy)

WIPP (USA)

Soudan (USA)

Kamioka (Japan)

SuperCDMS experiment at SNOLAB

 The Super Croygenic Dark Matter Search experiment is aiming for direct detection of DM interactions with Standard Model matter.

 Operating 18 Ge and 6 Si detectors in cryogenic conditions following a complementary approach.

• Commissioning is planned for 2024.

CUTE

SuperCDMS

Clean room

Measuring phonons with QETs

- Energy deposition in detector crystal creates charges and prompt phonons.
- Drifting charges create additional phonons via NTL (Neganov-Trofimov-Luke) effect.
- Phonons are measured by QETs (Quasiparticle trap assisted Electrothermal feedback Transition edge sensors).

Cooper pair broken Cooper pair Al fin W/Al Overlap W TES quasiparticle diffusion phonons particle interaction Si/Ge crystal

Detector technology

iZIP (interleaved Z-sensitive Ionization and Phonon) detectors

- Measure charge and phonons.
- Discrimination between nuclear recoil (NR) and electron recoil (ER).

HV (High Voltage) detectors

- Amplified NTL phonon production.
- Better energy resolution and lower threshold.

Dark matter search ranges

Absorption (Dark Photon, ALP):

Electron Recoil:

Migdal & Bremsstrahlung:

HV Detectors:

Low Threshold (LT):

Traditional Nuclear Recoil:

 \sim 1 eV - 0.5 MeV

 \sim 0.5 MeV - 10 GeV \sim 0.01 - 10 GeV

 \sim 0.5 - 10 GeV

 \gtrsim 1 GeV \gtrsim 5 GeV

peak search (HV)

no NR/ER discrim. (HV)

no NR/ER discrim. (HV + iZIP)

no NR/ER discrim. (HV)

limited NR/ER discrim. (iZIP)

full NR/ER discrim. (iZIP)

SuperCDMS projected sensitivity

Dark Matter Limit Plotter

- Plot limits and projections of various experiments and DM channels: NR, ER, Dark Photon, Axion.
- Download: dark-matter-limit-plotter
- Submit your data to be added!

Construction Status

Birgit Zatschler

Construction Status

Birgit Zatschler

Tower testing at OUTE

- The Cryogenic Underground TEst facility is located in SNOLAB next to SuperCDMS.
- Close collaboration between CUTE and SuperCDMS.
- Plan to test one SuperCDMS HV tower hosting 4 Ge and 2 Si detectors this summer/fall.
- Possibility to achieve early science results.

Recent publications – SuperCDMS HVeV prototype detector

Investigation of low energy excess

- Observed rate excess in low energy region.
- Hypothesis: luminescence photons could be created in PCB detector holder.
- Replaced PCB and analysis is underway.

Nuclear recoil ionization yield in silicon

- Ionization yield is the ratio of charge carriers produced by NR and ER.
- Ionization yield measurements below 4 keV indicate significant deviation from Lindhard model.

SuperCDMS also contributed to Snowmass 2021: arXiv:2203.08463

Summary & Outlook

- SuperCDMS is currently under construction at SNOLAB.
- Detector tower testing will be performed in CUTE in summer/fall 2023.
- · Plan to begin commissioning in 2024.
- Complementary detector technologies and crystal materials allow:
 - a broadband DM search and
 - sensitivities down to unprecedented cross sections.

SuperCDMS Collaboration

https://supercdms.slac.stanford.edu