Applications of a deep convolutional autoencoder to process pulses from a p-type point contact germanium detector

CAP Congress 2023 | Fredericton, NB

Mark Anderson

anderson.mark@queensu.ca

June 19th, 2023

Introduction

- High-purity germanium (HPGe) detectors widely used in beyond Standard Model rare event searches $(0\nu\beta\beta$, dark matter, etc.)^[2,3,4,5,6,7,8,9]
- Electronic noise makes signal identification challenging
 - Rare events in the presence of backgrounds

[10]

- Noise removal could help advance these searches
 - Identify low-energy signal events that would otherwise be dominated by electronic noise
 - Improved background rejection based on pulse shapes
 - $\bullet \ \mathsf{More} \ \mathsf{accurate} \ \mathsf{measurements} \ \mathsf{of} \ \mathsf{pulse} \ \mathsf{amplitudes} \to \mathsf{better} \ \mathsf{energy} \ \mathsf{resolution}$
- Deep learning has been successfully used in other fields (typically 2D images)
 - Why not 1D pulses from HPGe detectors?

Autoencoders

- An autoencoder is an algorithm used to learn a useful representation of data
 - Trained to map the inputs to the inputs (with some form of constraint)

- By definition, an autoencoder is *lossy*
 - The goal is to retain as much useful information as possible
- Typically a (deep) neural network

Denoising autoencoders

- Denoising autoencoders impose the constraint that reconstruction must also remove noise
 - Proposed as a method to extract robust features for other classification tasks^[12]
 - Input becomes a corrupted version of x, \tilde{x} , by some process $q_{\mathcal{D}}$

Internal/latent representation, y:

$$f_{\theta}(x) = y$$

Input reconstruction, z:

$$g_{\theta'}(y) = g_{\theta'}(f_{\theta}(x)) = z$$

Minimize some **loss function** quantifying the reconstruction of x, L(x,z)

$$L(x,z) = \frac{1}{N} \sum_{i=1}^{N} ||z_i - x_i||_2^2$$

Denoising autoencoders

- Denoising autoencoders impose the constraint that reconstruction must also remove noise
 - Proposed as a method to extract robust features for other classification tasks^[12]
 - Input becomes a corrupted version of x, \tilde{x} , by some process $q_{\mathcal{D}}$

Internal/latent representation, y:

$$f_{\theta}(\tilde{x}) = y$$

Input reconstruction, z:

$$g_{\theta'}(y) = g_{\theta'}(f_{\theta}(\tilde{x})) = z$$

Minimize some **loss function** quantifying the reconstruction of x, L(x,z)

$$L(x,z) = \frac{1}{N} \sum_{i=1}^{N} ||z_i - x_i||_2^2$$

Denoising autoencoders

- Denoising autoencoders impose the constraint that reconstruction must also remove noise
 - Proposed as a method to extract robust features for other classification tasks^[12]
 - Input becomes a corrupted version of x, \tilde{x} , by some process $q_{\mathcal{D}}$

Internal/latent representation, y:

$$f_{\theta}(\tilde{x}) = y$$

Input reconstruction, z:

$$g_{\theta'}(y) = g_{\theta'}(f_{\theta}(\tilde{x})) = z$$

Minimize some **loss function** quantifying the reconstruction of $x,\ L(x,z)$

$$L(x,z) = \frac{1}{N} \sum_{i=1}^{N} ||z_i - x_i||_2^2$$

The detector

- Signals are from a 1 kg p-type point contact detector located at Queen's University
 - Cylindrical with a radius of 3 cm and height of 5 cm
 - Manufactured by ORTEC/AMTEK
 - Operated in a PopTop cryostat

[13]

- Each signal is a sequence of voltages sampled at a fixed interval
 - Observed noise levels after preprocessing reflect energy of pulse; signal-to-noise ratio (SNR)
 - Different rise times reflect different positions

Datasets: real detector data

Americium-241 source

- Produces $60 \, \text{keV} \, \gamma \text{s}$
- Almost entirely single-site events
- Lower energy (higher noise), good for validation

Cobalt-60 source

- Produces 1173 keV and 1332 keV γ s
- Numerous multi-site events from Compton scatters
- Higher energy (lower noise), good for training

Detector noise

- Collected by randomly triggering the detector (and removing actual signals that occasionally occur)
- Used for data augmentation

Datasets: real detector data (preprocessing)

- Data pulses preprocessed to remove baseline
- Data pulses have exponential decay removed with pole zero correction
- Data pulses scaled by amplitude (calculated with a trapezoidal filter)

Amplitude normalization

Datasets: simulated data

Library pulses

- 1724 simulated "library" pulses^[14]
- Each pulse corresponds to point on $1 \text{ mm} \times 1 \text{ mm}$ azimuthally symmetric grid
- Created using siggen simulation software^[15]
- Used to infer position of real events

Piecewise linear smoothed (PLS) pulses

 Mimic the general shape of the library pulses without the requirement of complex physics simulations

Datasets: simulated data (data augmentation)

- From the simulated single-site event pulses, can create a diverse training set
 - Combine single-site simulated pulses to create artificial multi-site events
 - Apply random horizontal shifts, vertical shifts, and amplitude scales to each pulse
 - Add detector noise to each pulse with a random standard deviation

Note: no preprocessing required for simulated pulses!

Regular

- Trained to map the noisy pulse to the corresponding clean underlying pulse
- Must know the true pulse only works on simulated data

- Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
 - An impossible task in practice
 - Model will instead learn to predict the mean, given infinite different noisy realizations
- Can be used with simulations, but this is not required
 - For detector data, add even more noise to the already noisy pulse
 - Include a total variation penalty^[17] to original loss function L_0 to account for the noisy true mean
 - ullet Penalize the absolute difference between given sample (j) and subsequent sample (j+1) in pulse
 - Apply scaling factor λ to control weighting

$$L = L_0 + \frac{\lambda}{N} \sum_{i}^{N} \sum_{j}^{M-1} |z_{i,j+1} - z_{i,j}|$$

Regular

- Trained to map the noisy pulse to the corresponding clean underlying pulse
- Must know the true pulse only works on simulated data

- Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
 - An impossible task in practice
 - Model will instead learn to predict the mean, given infinite different noisy realizations
- Can be used with simulations, but this is not required
 - For detector data, add even more noise to the already noisy pulse
 - Include a total variation penalty^[17] to original loss function L_0 to account for the noisy true mean
 - ullet Penalize the absolute difference between given sample (j) and subsequent sample (j+1) in pulse
 - Apply scaling factor λ to control weighting

$$L = L_0 + \frac{\lambda}{N} \sum_{i}^{N} \sum_{j}^{M-1} |z_{i,j+1} - z_{i,j}|$$

Regular

- Trained to map the noisy pulse to the corresponding clean underlying pulse
- Must know the true pulse only works on simulated data

- Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
 - An impossible task in practice
 - Model will instead learn to predict the mean, given infinite different noisy realizations
- Can be used with simulations, but this is not required
 - For detector data, add even more noise to the already noisy pulse
 - Include a total variation penalty^[17] to original loss function L_0 to account for the noisy true mean
 - ullet Penalize the absolute difference between given sample (j) and subsequent sample (j+1) in pulse
 - Apply scaling factor λ to control weighting

$$L = L_0 + \frac{\lambda}{N} \sum_{i}^{N} \sum_{j}^{M-1} |z_{i,j+1} - z_{i,j}|$$

Regular

- Trained to map the noisy pulse to the corresponding clean underlying pulse
- Must know the true pulse only works on simulated data

- Trained to map noisy pulse to noisy pulse (different noisy realizations of same underlying signal)
 - An impossible task in practice
 - Model will instead learn to predict the mean, given infinite different noisy realizations
- Can be used with simulations, but this is not required
 - For detector data, add even more noise to the already noisy pulse
 - Include a total variation penalty^[17] to original loss function L_0 to account for the noisy true mean
 - ullet Penalize the absolute difference between given sample (j) and subsequent sample (j+1) in pulse
 - Apply scaling factor λ to control weighting

$$L = L_0 + \frac{\lambda}{N} \sum_{i}^{N} \sum_{j}^{M-1} |z_{i,j+1} - z_{i,j}|$$

Original ⁶⁰Co data pulse (low noise/high energy/large SNR)

Original ⁶⁰Co data pulse with a random noise pulse

Original ⁶⁰Co data pulse with *another* random noise pulse

Results: simulations

- Qualitatively, denoising with deep learning performs very well on simulations
- Autoencoder is superior to all traditional denoising methods investigated
 - Compared mean squared error on test set containing simulated single-/multi-site events
 - Each method optimized on a separate validation set to select hyperparameters
- Regular training procedure (simulations) outperforms Noise2Noise (⁶⁰Co data)
 - Still very good performance with Noise2Noise

Results: simulations

- Qualitatively, denoising with deep learning performs very well on simulations
- Autoencoder is superior to all traditional denoising methods investigated
 - Compared mean squared error on test set containing simulated single-/multi-site events
 - Each method optimized on a separate validation set to select hyperparameters
- Regular training procedure (simulations) outperforms Noise2Noise (⁶⁰Co data)
 - Still very good performance with Noise2Noise

Results: simulations

- Qualitatively, denoising with deep learning performs very well on simulations
- Autoencoder is superior to all traditional denoising methods investigated
 - Compared mean squared error on test set containing simulated single-/multi-site events
 - Each method optimized on a separate validation set to select hyperparameters
- Regular training procedure (simulations) outperforms Noise2Noise (⁶⁰Co data)
 - Still very good performance with Noise2Noise

Results: simulations (energy resolution)

- In terms of physics results, allows for an improvement in the energy resolution
 - Energy calculated from the amplitude of a trapezoidal filter with given shaping time
 - FWHM of peak is the energy resolution
- Created test datasets with different noise levels and evaluated the energy resolution of each
- At every noise level and shaping time, the results after denoising with our autoencoder are superior
 - Proportionally larger improvements with increasing noise level, decreasing shaping time

Results: data

- Qualitatively, denoising with deep learning performs very well on data
- More difficult to quantify denoising
 - No true underlying pulse to compare to
- However, can make a statistical comparison to evaluate the performance

[1] (modified)

Results: data (χ^2 comparison)

- 241 Am dataset contains mostly single-site events from $60~{\rm keV}~\gamma{\rm s}$
- Use a χ^2 comparison between the original pulse and denoised pulse, best-fit library pulse

$$\chi^{2}(x_{i}, z_{i}) = \sum_{j=M_{1}}^{M_{2}} \frac{(z_{i,j} - x_{i,j})^{2}}{\sigma_{i}^{2}}$$

- χ^2 distribution between noisy and denoised pulse is consistent with expected χ^2 distribution of our detector noise
 - Taken over 200 samples containing rise region $(M_1, M_2 \text{ set appropriately})$

- Can also evaluate the effect of denoising on the energy resolution, compare to simulations
- ullet Using 241 Am data, optimal energy resolution is comparable before and after denoising
- Much lower shaping time required to achieve good energy resolution
 - Important for data storage, analysis, etc.
- However, results are not as good as simulations would suggest
 - What's different?

We assume data pulses have one exponential decay and correct for that

- In reality, there are multiple sources of exponential decay, usually small, but still contribute
- A single "effective" pole zero correction is thus imperfect and leaves residual effects from the other exponential decays

Simulated pulse with noise

Simulated pulse with noise (convolved with multiple exponentials)

Simulated pulse with noise (deconvolved with one "effective" exponential)

Simulated pulse with noise (deconvolved with one "effective" exponential)

Conclusions and future work

- Deep convolutional autoencoders are effective at removing electronic noise from HPGe detector pulses
 - Outperforms various traditional denoising methods
 - Denoised pulses are statistically consistent with data pulses
 - Can reach optimal energy resolution with a lower shaping time
 - · Simulations suggest improvements in the overall optimal energy resolution are possible
 - Accounting for effects present in real data could improve results
- Models can be trained without the need for detailed detector simulations
 - PLS pulses are a very rough approximation to library pulses
 - Noise2Noise method requires only noisy detector data
 - Results could likely be improved with more (diverse) data

Conclusions and future work

- Results presented here are focused on HPGe detector data
 - Noise removal is beneficial in many contexts
 - Our group is applying these methods to signals from other detector technologies
 - Gaseous proportional counters (e.g., see talk from Noah Rowe), bubble chambers
- Our group is also exploring various extensions of this research
 - New network architectures such as CycleGAN^[18] for improved performance
 - Potential to improve modelling of multiple exponential decays, and thus energy resolution, due to the less stringent requirement of unpaired simulated and detector pulses
 - Continuous inline denoising before triggering to reduce trigger thresholds
 - Useful to identify low SNR events otherwise dominated by electronic noise
- Work is broadly applicable to the particle astrophysics community and has great potential to be expanded on

Thank You!

More details in the published paper. Check it out!

doi:10.1140/epic/s10052-022-11000-w arXiv:2204 06655

Acknowledgements

- Thanks to all other authors of the paper
 - V. Basu, R. D. Martin, C. Z. Reed, N. J. Rowe, M. Shafiee, T. Ye
- This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Arthur B. McDonald Canadian Astroparticle Physics Research Institute, and the Canada Foundation for Innovation
- The author held a Walter C. Sumner Memorial Fellowship

References I

- [1] M. R. Anderson *et al.*, "Performance of a convolutional autoencoder designed to remove electronic noise from p-type point contact germanium detector signals," *Eur. Phys. J. C*, vol. 82, no. 12, p. 1084, 2022.
- [2] S. I. Alvis et al., "Search for neutrinoless double-β decay in ⁷⁶Ge with 26 kg yr of exposure from the Majorana Demonstrator," Phys. Rev. C, vol. 100, p. 025501, 2019.
- [3] M. Agostini et al., "Final results of GERDA on the search for neutrinoless double-β decay," Phys. Rev. Lett., vol. 125, p. 252502, 2020.
- [4] N. Abgrall et al., "LEGEND-1000 preconceptual design report," arXiv preprint arXiv:2107.11462, 2021.
- [5] C. E. Aalseth *et al.*, "CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors," *Phys. Rev. D*, vol. 88, no. 1, p. 012002, 2013.
- [6] M. Agostini et al., "First search for bosonic superweakly interacting massive particles with masses up to 1 MeV/c² with GERDA," Phys. Rev. Lett., vol. 125, no. 1, p. 011801, 2020.
- [7] N. Abgrall *et al.*, "Search for Pauli Exclusion Principle violating atomic transitions and electron decay with a p-type point contact germanium detector," *Eur. Phys. J. C.*, vol. 76, no. 11, pp. 1–5, 2016.

References II

- [8] S. I. Alvis *et al.*, "First limit on the direct detection of lightly ionizing particles for electric charge as low as *e*/1000 with the Majorana Demonstrator," *Phys. Rev. Lett.*, vol. 120, no. 21, p. 211804, 2018.
- [9] S. I. Alvis et al., "Search for trinucleon decay in the Majorana Demonstrator," *Phys. Rev. D*, vol. 99, no. 7, p. 072004, 2019.
- [10] "Underground neutrino experiment could provide greater clarity on matter-antimatter imbalance," accessed: 2023-05-13. [Online]. Available: https://newscenter.lbl.gov/2018/03/26/neutrino-experiment-probes-matter-antimatter-imbalance/
- [11] "Building autoencoders in keras," accessed: 2023-05-13. [Online]. Available: https://blog.keras.io/building-autoencoders-in-keras.html
- [12] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, no. Dec, pp. 3371–3408, 2010.
- [13] "P-type point-contact (PPC) germanium detectors," accessed: 2023-05-13. [Online]. Available: https://www.npl.washington.edu/majorana/design-technologies

References III

- [14] Vasundhara, "Pulse fitting for event localization in high purity germanium point contact detectors," Master's thesis, Queen's University, 2020.
- [15] D. C. Radford, "siggen," 2017. [Online]. Available: https://github.com/radforddc/icpc_siggen
- [16] J. Lehtinen et al., "Noise2Noise: Learning image restoration without clean data," in *Proc. Int. Conf. Mach. Learn.*, vol. 80, 2018, pp. 2965–2974.
- [17] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," *Physica D*, vol. 60, no. 1-4, pp. 259–268, 1992.
- [18] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in *Proc. IEEE Int. Conf. Comput. Vis.*, 2017, pp. 2223–2232.
- [19] "1D convolution," accessed: 2022-08-10. [Online]. Available: https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/1d-convolution
- [20] "Med Phys 4RA3, 4RB3/6R03 Chapter 6: Pulse Processing," accessed: 2023-05-13. [Online]. Available: https://www.science.mcmaster.ca/radgrad/images/6R06CourseResources/4RA34RB3_Lecture_Note_6_ Pulse-Processing.pdf

Additional Slides

Model architecture

- Fully convolutional autoencoder
 - Weight sharing provides consistent noise removal across pulse
 - Feature locality and shift equivariance
 - Allows for a variable input shape (subject to some restrictions)
 - Significant reduction in the number of trainable parameters

Model architecture

Layer	Stride	Window	Output
Input			4096, 1
Convolution	1	1	4096, 8
Convolution	1	9	4088, 16
Average Pooling	2	2	2044, 16
Convolution	1	17	2028, 32
Average Pooling	2	2	1014, 32
Convolution	1	33	982, 64
Average Pooling	2	2	491, 64
Convolution	1	33	459, 32
Transpose Convolution	1	33	491, 32
Upsampling	2	2	982, 64
Transpose Convolution	1	33	1014, 64
Upsampling	2	2	2028, 64
Transpose Convolution	1	17	2044, 32
Upsampling	2	2	4088, 32
Transpose Convolution	1	9	4096, 16
Convolution (output)	1	1	4096, 1

Results on simulations

Training procedure and data			Mean squared error ($ imes 10^{-5}$)				
			Gaussia	Gaussian noise		Detector noise	
Procedure	Data	Noise	Library	PLS	Library	PLS	
Regular	Library	Detector	4.12	4.72	3.76	4.21	
Regular	Library	Gaussian	3.40	3.82	4.50	4.77	
Regular	PLS	Detector	5.10	4.48	4.15	3.57	
Regular	PLS	Gaussian	3.93	3.36	5.02	4.31	
$\overline{N2N\;(\lambda=0)}$	Library	Detector	3.90	4.37	3.86	4.20	
N2N $(\lambda = 0)$	Library	Gaussian	3.46	3.87	4.57	4.82	
N2N $(\lambda = 0)$	PLS	Detector	5.11	4.48	4.14	3.55	
$N2N\ (\lambda = 0)$	PLS	Gaussian	3.85	3.46	4.97	4.43	
$\overline{N2N\;(\lambda=0)}$	Detector	Detector	6.54	6.30	7.78	7.40	
N2N $(\lambda = 10^{-2})$	Detector	Detector	4.17	4.54	5.04	5.26	

Trapezoidal filter

[20]

Noise curve

CycleGAN

