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Outline

Quantum Chemistry
e Electron interactions
e Density functionals

Quantum Computing
e Special rules

e Near-term computers
https://en.wikipedia.org/wiki/Disaccharide

Quantum Algorithms

e Sparse-rank factorization: Lanczos |0) o
e Ground states and excitations
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e Density functionals
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Quantum chemistry

Electron-electron interactions
e Born-Oppenheimer approximation
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e Second quantization:
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QMA-hard

Hardness of many-body problem

LETTERS

PUBLISHED ONLINE: 23 AUGUST 2009 | DOI:10.1038/NPHYS1370

nature

physics

Computational complexity of interacting electrons
and fundamental limitations of density

functional theory
Norbert Schuch'* and Frank Verstraete?*

One of the central problems in quantum mechanics is
to determine the ground-state properties of a system of
electrons interacting through the Coulomb potential. Since its
introduction'?, density functional theory has become the most
widely used and successful method for simulating systems
of interacting electrons. Here, we show that the field of
computational complexity imposes fundamental limitations
on densitv functional theorv. In particular if the associated

(that is, antisymmetric) quantum states. Following the early work
of ref. 3, it was shown!? that this problem could be rephrased
as a single-particle minimization problem, for the reason that the
only problem-dependent part is the external potential V, whose
expectation value only depends on the local density, whereas the
kinetic and interaction terms T and I are fixed and universal for all
systems. Thus, the ground-state energy is given by




Density functional theory

Walter Kohn:
* Nobel Prize in Chemistry (1998)

A. Hohenberg & Kohn Theorem
(1964)

« Compact representation

* Provably equivalent

B. Kohn & Sham (1965)

» Also John Pople




Density functional theory

n(r) = ﬂ...Jl‘P(r, I, ...,rNelzdrdrz...drNe
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Density functional theory
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Quantum Computing
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Interatomic distance (A)

Lanyon, et. al., Nature Chemistry 2, 106—111 (2010)
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Constraints

Quantum computing
e Uncertainty

e No copying (no cloning) ..
e Less memory
e Simple operations are harder

o Addition has a high gate count

e Reverse Copenhagen interpretation

” CANADA RESEARCH CHAIRS
, CHAIRES DE RECHERCHE DU CANADA




Algorithms

L. K. Grover, “Quantum Mechanics Helps in Searching for a
Needle in a Haystack,” Phys. Rev. Lett. 79, 325 (1997)

e Classical analogy with coupled oscillators

Grover’s search algorithm

L. K. Grover, “From Schrodinger’s equation to the quantum
search algorithm,” Pramana 56,333 (2001)

3 G 200 12 *

e Classical: O(N); Quantum: O(y/N)
e Afew other notable algorithms (Shor’s algorithm, Deutsch-Josza)
Q CANADA RESEARCH CHAIRS
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Grover’s search for the density functional?

What is N?
e Superposition of all states
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Grover’s search for the density functional?

What is N?

e N is exponentially sized in the quantum case
o Uninformed search
o Not just square integrable functions

E = min (F[n] + V[n])

e Not feasible...
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Near-term quantum algorithms

Variational Quantum Eigensolver (VQE)

e Minimize energy with classical parameters

E= min (yw(0,,0,,....0y)|H|w(0,,0,,...,0y))

0,,0,....0y

e NP-hard in general
e Noisy
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PHYSICAL REVIEW LETTERS 127, 120502 (2021)

Editors' Suggestion

Training Variational Quantum Algorithms Is NP-Hard

Lennart Bittel®" and Martin Kliesch®'
Quantum Technology Group, Heinrich Heine University Diisseldorf, 40225 Diisseldorf, Germany

® (Received 25 February 2021; accepted 10 August 2021; published 17 September 2021)

Variational quantum algorithms are proposed to solve relevant computational problems on near term
quantum devices. Popular versions are variational quantum eigensolvers and quantum approximate
optimization algorithms that solve ground state problems from quantum chemistry and binary optimization
problems, respectively. They are based on the idea of using a classical computer to train a parametrized
quantum circuit. We show that the corresponding classical optimization problems are NP-hard. Moreover,
the hardness is robust in the sense that, for every polynomial time algorithm, there are instances for which
the relative error resulting from the classical optimization problem can be arbitrarily large assuming that
P # NP. Even for classically tractable systems composed of only logarithmically many qubits or free
fermions, we show the optimization to be NP-hard. This elucidates that the classical optimization is
intrinsically hard and does not merely inherit the hardness from the ground state problem. Our analysis




Real-time evolution

Trotter-Suzuki decomposition

Energy (hartree)

e Decompose the time evolution operator A

it

12

o 1 3
Interatomic distance (A) distance (A] Interatomic distance (A)

e_lHt = e_lHAte_lHBt —|— O(tz) Lanyon, et. al., Nature Chemistry 2, 106-111 (2010)
e How long to run? Months on small molecules

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum
Chemistry

David Poulin,! M. B. Hastings,® 3 Dave Wecker,®> Nathan Wiebe,®> Andrew C. Doherty,* and Matthias Troyer®

! Département de Physique, Université de Sherbrooke, Québec, Canada
2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
3 Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
4 Centre for Engineered Quantum Systems, School of Physics,
The University of Sydney, Sydney, NSW 2006, Australia
5 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
(Dated: June 20, 2014)

The simulation of molecules is a widely anticipated application of quantum computers. However,
recent studies [I} 2] have cast a shadow on this hope by revealing that the complexity in gate count
of such simulations increases with the number of spin orbitals N as N®, which becomes prohibitive
even for molecules of modest size N ~ 100. This study was partly based on a scaling analysis of the
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Quantum Lanczos Recursion
T.E. Baker, Phys. Rev. A103, 032404 (2021)

Ground-states
e Run a Lanczos recursion

[ Ynt1) = HIYa) — anl¥n) — Bul¥n-1)

e How to actually do this?
o Linear combination of unitaries H = aiUi
o  Oblivious Amplitude Amplification :
m Guarantees operator applied is correct !
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Quantum Lanczos Recursion
T.E. Baker, Phys. Rev. A103, 032404 (2021)

Minimal wavefunction preparation

e Sampling trick

e State-preserving quantum counting (QAM-sampling/Quantum
Amplitude Estimation)

G

00

LETTER

doi:10.1038/nature09770

Quantum Metropolis sampling

K. Temme', T.J. Osborne?, K. G. Vollbrecht®, D. Poulin* & F. Verstraete'

The original motivation to build a quantum computer came from
Feynman', who imagined a machine capable of simulating generic
quantum mechanical systems—a task that is believed to be intract-
able for classical computers. Such a machine could have far-
reaching applications in the simulation of many-body quantum
physics in condensed-matter, chemical and high-energy systems.
Part of Feynman’s challenge was met by Lloyd? who showed how to
approximately decompose the time evolution operator of interact-
ine auantum particles into a short seauence of elementarv eates.

have a multitude of applications. In quantum chemistry, it could be
used to compute the electronic binding energy as a function of the
coordinates of the nuclei, thus solving the central problem of interest.
In condensed-matter physics, it could be used to characterize the phase
diagram of the Hubbard model as a function of filling factor, inter-
action strength and temperature. Finally, it could conceivably be used
to predict the mass of elementary particles, solving a central problem in
high-energy physics.

The seminal work of I.lovd? demonstrated that 2 auantum combputer




Tangent: Quantum Metropolis sampling

e Temme, et. al. Quantum Metropolis Sampling Nature 471,
87 (2011) —

e Metropolis algorithm
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Tangent: Quantum Metropolis sampling
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Tangent: Quantum Metropolis sampling

e Quantum counting
o “Counts” the number of transitions between a wavefunction
o  QAM-sampling
o Marriott and Watrous, Quantum Arthur- Merlin games, Comput.
Complex 14, 122 (2005)

C|¥) = a|¥P) + at|PH

e Generates expectation values of any operator!
o No wavefunction destruction!
o Reversible
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Quantum Lanczos Recursion
T.E. Baker, Phys. Rev. A103, 032404 (2021)

Green’s functions

(W[E], 8 | W)
B

gj&;io (w) =

w — Oy —

®w—0o] — —
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Quantum computing: Excited States
T.E. Baker, arxiv: 2109.14114

Excitations at polynomial cost

e Block Lanczos method
o Block matrices replace Lanczos coefficients
m  O(d?) for d excitations

‘Iln+1Bn—|—1 =HY, -V, A, — \Iln—lBL
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Quantum computing: Excited States
T.E. Baker, arxiv: 2109.14114

Fast convergence
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Quantum computing: Excited States
T.E. Baker, arxiv: 2109.14114

Fast convergence
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Quantum computing: Excited States
T.E. Baker, arxiv: 2109.14114

Fast convergence
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Quantum computing: Excited States
T.E. Baker, arxiv: 2109.14114

Linear error relationship

-1 1 1 1

10 -

10 °F -

10 °F -

T = -

10 F -

10—11_ -

I—10 I—7 I—4 L

O Snumammncc 10 07 10° 10




Density Functional Theory & Quantum Computing

PHYSICAL REVIEW RESEARCH 2, 043238 (2020)

Density functionals and Kohn-Sham potentials with minimal wavefunction
preparations on a quantum computer

Thomas E. Baker®! and David Poulin’?3
nstitut quantique & Département de physique, Université de Sherbrooke, Sherbrooke, Québec JIK 2R1 Canada
2Quantum Architecture and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
3Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8 Canada

® (Received 12 August 2020; accepted 12 October 2020; published 16 November 2020)

One of the potential applications of a quantum computer is solving quantum chemical systems. It is known
that one of the fastest ways to obtain somewhat accurate solutions classically is to use approximations of density
functional theory. We demonstrate a general method for obtaining the exact functional as a machine learned
model from a sufficiently powerful quantum computer. Only existing assumptions for the current feasibility of
solutions on the quantum computer are used. Several known algorithms including quantum phase estimation,




Density Functional Theory from the quantum computer

e Back to density functionals...

n(r) = ) pyh (X)p,r)
]

py = (P167e;1 %)

e Coefficients of the density matrix are just expectation values!
e Energy and density is sufficient
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Exact Kohn-Sham potentials

e Always v-representable
e Cost function with Quantum Gradient Algorithm

Tylvs] = (W] T + V| W[v]) — (P[vs]|T + Vi | P[vs])
(WIVIIT + Vi |W[v]) > (@[vs]|T + Vi|@[vs])

8T\IJ [vs]

= ny(r) — ne(r)

Ca OV



Density Functional Theory from the quantum computer

e Type of density functional
o Many varieties

e Technically, potential functionals so far
o There is a Potential Functional Theory that has a Hohenberg-Kohn
proof attached.
o Proper labelling of training data

e Can get gradients from Quantum Gradient Algorithm
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Density Functional Theory from the quantum computer

e Potential functional theory

E = min(F[v] + / n[v](r)v(r) dr)

nlv]

Flv]l = min (W[]|T + V| W[v])

oF [v] . ]‘8n[v](r)
' osv Sv(r’)

v(r)dr' =0




Density Functional Theory from the quantum computer

e Time-dependent density functional theory

2
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Density Functional Theory from the quantum computer

e Finite-temperature density functional theory
2= min{Ff[n] + f n(r)(v(r) - u)dr}
’ n

F7[n] = min{T[['] + V¢ [['] — =S[I']}

I'—>n

=) pv.il¥w.i) (Y.
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Density Functional Theory from the quantum computer

e More!
o Ensemble DFT
o Non-Born-Oppenheimer DFT
o Relativistic DFT
o Molecular dynamics simulations that are accurate with DFT

e Summary:
o Two algorithms: Quantum counting and quantum gradient
algorithms
o Any type of density functional
o Minimal measurement
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Conclusion jUIia

e New algorithms
o DFT from the quantum computer
o Lanczos-based wavefunction preparation (rapid convergence!)

e From old algorithms
o Quantum Counting

o Quantum Gradient Algorithm ’gggl&%%l_l CHAIRS
e Continued Fraction Green'’s function wgﬁ'ﬁﬁcﬁ DU

e Excitations

e Needs error correction U‘I Ic .-[!] g

e Might have near-term application
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