Low Background Measurements and Techniques

Ian Lawson

2023 CAP Congress UNB, Fredericton, NB June 21, 2023

Courtesy of Physics Open Labs

2023 CAP Congress

AB

Effect of Overburden (Why go underground)

Deep underground facilities provide significant rock overburden and commensurate reduction in cosmic ray flux, and cosmic ray-spallation induced products (neutrons)

Muons can be veto'd in anti-coincidence shields; however, secondary products may be an issue

Cosmogenics may require underground material production or purification

•May also contribute to backgrounds (e.g. ¹¹C)

Muon flux depends on •Overburden •overburden profile •seasonal effects

With all of these backgrounds present, there are several methods to measure them and these will be described.

SNOLAB

Surface Facility

Underground Laboratory

2km overburden (6000mwe)

300m

Muon Supression

- 2 km overburden
- 6000 mwe
- Muon flux: 0.27 muons/m/day

SNOLAB - Rock Properties

- Analysed using ICP-MS, ICP-AES and XRF
- Gamma Counted with HPGe
- Norite: The same as new lab areas
- Shotcrete: New areas slightly higher for Uranium and more than 2x for Thorium

	Norite Rock	Shotcrete/Concrete
0	47 %	48 %
Si	27 %	28 %
Fe	6.5 %	2.5 %
Al	6 %	6 %
Mg	6 %	1%
Ca	3.5 %	10 %
Na	1.7 %	2 %
К	1 %	1.7 %
Ti	0.3 %	0.2 %

Norite Density: 2.88 g/cm³

SNOLAB - Rock Properties

lsotope	Norit	e Rock	Shotcrete			
	Concentration	Neutron Production (n/yr/cm ³)	Concentration	Neutron Production (n/yr/cm ³)		
²³² Th	5.10 ppm	8.13	2.4 ppm	0.99		
²³⁸ U	1.10 ppm	3.51	1.2 ppm	1.05		
Spontaneous Fission ²³⁸ U		1.19		1.03		
Total		12.83		3.07		

SNOLAB - Rock Properties

lsotope	Norit	e Rock	Shotcrete			
	Concentration	Neutron Production (n/yr/cm³)	Concentration	Neutron Production (n/yr/cm ³)		
²³² Th	5.10 ppm	8.13	2.4 ppm	0.99		
²³⁸ U	1.10 ppm	3.51	1.2 ppm	1.05		
Spontaneous Fission ²³⁸ U		1.19		1.03		
Total		12.83		3.07		

Norite Rock Simulated Neutron Yield

Neutron production estimates were obtained from SOURCES-4C and used as input in GEANT4

- 90%: (α ,n) on light elements
- 10%: ²³⁸U spontaneous fission
- Measurements from SNO area (1999):
- Thermal Flux: 4144 +- 50 +- 105 neutrons / m² / day
- Estimated Fast Neutron Flux: 4000 neutrons / m² / day

Measured Neutron Backgrounds (LNGS & LSM)

Spectrum in laboratory depends on local geology (rock composition)

•both for fast and thermal neutrons

- •U/Th + moderators
- muons + moderators

•small levels of high neutron cross-section contaminants make a big difference

Radon Levels

Average radon levels (with air ciruclation operational:

123.1 +- 6.2 Bq/m³

Average radon levels without air circulation:

589.8 +- 114.3 Bq/m³.

June 21, 2023

2023 CAP Congress

Reducing Radon Levels

Use liquid nitrogen boil-off gas

Use compressed air supplied from surface: 3.18 +- 0.15 Bq/m³

One can also use nitrogen gas to purge radon from small/medium volumes: 2.06-4.41 Bq/m³

Even better results can be achieved using radon scrubbing systems

Neutron Measurements

*Ing, H., Noulty R., McLean T.D. (1997). Bubble Detectors- A Maturing Technology. Radiation Measurements 1(27). 1-11. doi:10.1016/S1350-4487(96)00156-4â

Direct measurement of the neutron spectrum will be useful

- Simulations
- Experiment Shield design
- Data Analysis
- Low expected rate means long counting times
- Bubble Detector Spectrometer (BDS)
- The BDS is generally used nuclear research institutions, nuclear utilities and medical accelerator installations
- Previous use by space agencies
- Manufactured by Bubble Technology Industries for neutron spectrometry
- Superheated liquid in an elastic polymer gel
- When droplets are struck by neutrons, small gas bubbles are formed that remain fixed and can be counted
- Not sensitive to gammas
- Isotropic angular response
- Six thresholds: 10, 100, 600, 1000, 2500 and 10000 keV

Mitigating Neutron Backgrounds

PICO-2L/SENSEI shield, showing water tank shielding stack, pressure carts, DAQ racks.

Tanks are 50 cm thick, combining water and polypropylene.

DAMIC CCD-based dark matter detector, focus on low mass WIMPS.

Shielding consists of 16 inches of polyethylene sheeting

Gamma-ray Backgrounds

Reduction in γ -ray background at higher energies from c.r. and neutron reduction

• important for nuclear astrophysics dedicated beam experiments, and some $0\nu\beta\beta$ isotopes

Below 3.5MeV dependent on local geology and rock material

- Boulby (red)
- Gran Sasso (blue)
- surface (black)

Gamma-ray Backgrounds

٠

Sample of raw data from one of the small NaI crystal after 7.4 days

- Detailed gamma spectra below 3 MeV in different areas of the laboratory is of interest
- This spectra depends on the rock composition and materials, so it varies within the lab
- We have two 1.5 x 1.5 inch NaI(TI) crystal and MCAs
- Currently measuring internal backgrounds
- A lab survey will be completed to generate spectra for areas of interest in the lab

Mitigating γ-ray Backgrounds

Lead shielding at appropriate thickness

Water shielding at appropriate thicknessJune 21, 20232023 CAP Congress

H+

0-

Techniques to Measure These Backgrounds (Primarily U/Th decay chains and K)

Measurement Method	Background Detected	Sensitivity (for U/Th)		
•Ge spectrometry	γ emitting nuclides	10-100 µBq/kg		
 Rn emanation assay 	²²⁶ Ra, ²²⁸ Th	0.1-10 µBq/kg		
 Neutron activation 	primordial parents	0.01 µBq/kg		
 Liquid scintillation counting 	α,β emitting nuclides	1 mBq/kg		
•Mass spectrometry (ICP-MS; AM	IS) primordial parents	1-100 µBq/kg		
•Graphite furnace AAS	primordial parents	1-1000 µBq/kg		
 Röntgen Excitation Analysis 	primordial parents	10 mBq/kg		
•a spectrometry	²¹⁰ Po, a emitting nuclides	1 mBq/kg		

To reach these sensitivities, samples may have to count for several months

Uranium Decay Chain

Uranium – Radium A = 4n + Gamma Intensities			hn + 2				63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4.468x10 ⁹ a			
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m 6.7 h	2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m 9.980% 0.020%	◄ 511 0.076	Rn 222 3.8235(3) d	4 186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	3 609.312 46.1 3 1764.494 15.4 6 1120.287 15.4 3 1238.110 5.79 3 2204.21 5.08 3 768.356 4.94 3 1377.669 4.00 8 934.061 3.03	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us									
		none	Bi 210 5.013 d										
		Pb 206 stable	8 03.10 0.00121	Po 210 138.376 d									

June 21, 2023

Thorium Decay Chain

Thorium A = 4n Gamma Intensities					13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a				
								911.204 25.8 968.971 15.8 338.320 11.27 964.766 4.99 463.004 4.40 794.947 4.25 209.253 3.89	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	▼ 549.76 0.114	Rn 220 55.6(1) s	▲ 240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 131.613 0.131 166.410 0.104	Th 228 1.9116(16) a		
2614.533 99.0 583.191 84.5 510.77 22.6 860.564 12.42 277.351 6.31 763.13 1.81	Tl 208 3.053(4) m	α 39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727.330 6.58 1620.50 1.49 785.37 1.102								
		Pb 208 stable	•	Po 212 299(2) ns								

Other Interesting Isotopes

Usually Present:

Occasionally Present:

•⁵⁴Mn at 834.85 keV Observed in Stainless Steel

•⁷Be at 477.60 keV Observed in Carbon based materials, due to neutron activation, samples are particularly affected after long flights.

•¹³⁸La and ¹⁷⁶Lu Observed in rare earth samples such as Nd or Gd.

Ge Spectrometry SNOLAB PGT HPGe Counter

June 21, 2023

Unshielded and Shielded Spectra (PGT Coax Detector)

Energy (keV)

Calibration Spectrum

Typical Stainless Steel Spectrum

Ceramic Spectrum

Counts

Gamma Counter Sensitivities

Isotope	SNOLAB Gamma Counter 1 PGT	SNOLAB Gamma Counter 2 (mBq)	SNOLAB Gamma Counter 3 (mBq) Lively	SNOLAB Gamma Counter 4 (mBq)	SNOLAB Gamma Counter 5 (mBq) Gopher
²³⁸ U	0.11 mBq	0.02 mBq	0.05 mBq	0.09 mBq	0.17 mBq
²³⁵ U	0.16 mBq	0.01 mBq	0.02 mBq	0.06 mBq	0.08 mBq
²³² Th	0.10 mBq	0.02 mBq	0.06 mBq	0.08 mBq	0.21 mBq
⁴⁰ K	1.42 mBq	0.92 mBq	0.45 mBq	1.22 mBq	1.01 mBq
⁶⁰ Co	0.04 mBq	0.03 mBq	0.02 mBq	0.02 mBq	0.04 mBq
¹³⁷ Cs	0.13 mBq	0.02 mBq	0.02 mBq	0.05 mBq	0.08 mBq
⁵⁴ Mn	0.043 mBq	0.033 mBq	0.021 mBq	0.034 mBq	0.044 mBq
²¹⁰ Pb	N/A	0.55 mBq	31.53 mBq	7.71 mBq	16.49 mBq

Dual Detector Comprehensive Test Ban Treaty Detector

- Comprehensive Test Ban Treaty Detector Health Canada's radionuclide laboratory CAL05
- Two Broad Energy Germanium (BeGe) Detectors
- Coincidence events between the two detectors

Dual Detector Beta-gamma coincidence detection

- Atmospheric radioxenon monitoring
- Two thin passivated implanted planar silicon wafers
- Beta Detector

•

- Gas samples are placed in the detector
- Coincidence of Beta-Gamma

Coincidence Events (Events per Day per PIPS)

Dual Detector Future Work

- Permanent Shielding is being manufactured
- Working on measuring backgrounds
- Measure detector efficiencies and verify the GEANT4 modelling of the detectors
- Conduct coincidence studies
- Detection and measurement of radioactive noble gas signals at significantly lower concentrations than currently achievable

Alpha Counting

Model: XIA Ultra-Lo 1800

Argon gas drift chamber for Alpha rate measurement

Uses electronic amplification rather than gas amplification

"Background Free" measurements

Alpha Counting

- Activities as low as 6 +/- 1 x 10⁻⁴ alphas/cm²/hour = 180 +/- 30 nBq/cm² have been measured.
- Small residual background due to radon and cosmic rays slipping through cuts.
- Available for assays.
- Large (30 x 30 cm or more), thin (<1cm), conductive materials are best.
- Count region: 1800cm² and 707cm2 circular Maximum sample weight: 9kg, Maximum sample thickness: 6.3mm

Inductively Coupled Plasma - Mass Spectromety

- Agilent 8900 ICP-QQQ advanced application model (triple quadrupole ICP-MS)
- System will be run in SNOLAB's surface clean labs
- Used for elemental analysis at trace detection levels.
- Our aim is to achieve sub-ppt detection of a variety of elemental analytes in samples
- Our first effort will be an ultra-low detection method for UPW monitoring
- Current key analytes of interest for ICP-MS at SNOLAB are currently: U, Th, K, Pb
- We will also be using the instrument to perform isotopic ratio analysis

Agilent 8900 ICP-QQQ Example of ICP-MS at SNOLAB

Alpha Beta (BiPo) Counting System

Transparent liquid scintillator vials optically coupled to 2" PMTs.

The technique is combination of pulse shape discrimination and coincidence counting for identifying BiPo events.

Sensitivity for ²³⁸U and ²³²Th is ~1 mBq assuming that the chains are in equilibrium.

Ortec MPC-1000-GFW Commercial System June 21, 2023 CAP Congress

32

Radon Emanation

Emanation: Radon atoms formed from the decay of radium escape from the decaying isotopes and into the spaces between the isotopes.

Transport: Diffusion and advective flow cause the movement of the radon atoms through the sample to the surface.

Exhalation: Radon atoms that have been transported to the surface and then exhaled to the surface.

Samples generally placed in a chamber to allow the radium to decay for several halflives and then radium daughters are accumulated and counted to give the rate in Bq/m²/s or Bq/kg/s

Sample	Rate (Bq/m²/s	References
Shotcrete	1.7-4.2 mBq/m ²	J. Bigu and E.D. Hallman SNO-STR-92- 064
Copper Foil	1.2-1.7 μBq/m²	G. Zuzel, H. Simgen, Applied Radiation and Isotopes, Volume 67, Issue 5, May 2009, 889.
Stainless Steel	4.6-10.2 μBq/m²	G. Zuzel, H. Simgen, Radon Emanation measurements, GERDA General Meeting, July 11, 2007
Silicon Rubber	196 mBq/m²	Zuzel, G., AIP Conference Proceedings, Vol. 785, pp. 142-149.

SNOLAB Surface Radon Emanation Chamber

A new board with one emanation chamber is fully built and currently in use for material screening

Plan to add additional emanation chambers

Neutron Activation

Sample is activated with neutrons causing its components to form radioactive isotopes.

Main advantage is that the sample does not need to be destroyed.

Sample can then be counted using usual methods such as Ge spectrometry.

Main drawback is that the sample may remain radioactive for quite some time and there are limited opportunities to irradiate samples as suitable activation reactors are declining.

Röntgen Excitation Analysis

X-ray fluorescence of a sample after being bombarded with high-energy X-rays or gamma rays.

Used for elemental analysis and chemical analysis, used generally for metals, glass, building materials, etc...

For low background experiments, for example, it can be used to measure surface contamination by observing any presence of heavy elements such as iron, calcium and zinc which can be found in mine dust.

Catalogue of EMI Signatures

Spectrum Analyzer with a 9 kHz - 7.5 GHz frequency range Survey and catalogue sources of electrical noise in the lab

Material Assay Database

•The Assay and Acquisition of Radiopure Materials (AARM) Collaboration originally developed the Community Material Assay Database radiopurity.org.

•The database is hosted at SNOLAB.

•Contains published results and non-published results with permission of the experiment June 21, 2023 CAP Congress

Material Assay Database (radiopurity.org)

۵	*			м	ozilla Firefox							~ ^ X
<u>F</u> ile	<u>E</u> dit <u>V</u> iew History <u>B</u> ool	kmarks <u>T</u> ools	s <u>H</u> elp									
0	Laughter Is the Best MUTED	Medicine ×	radiopurity.org/simple_search ×	+								~
\leftarrow	\rightarrow C \textcircled{a}	0	https://radiopurity.org/simple_se	arch		ন্ন ব	Search		<u>o</u> 🛛	⊻ ॥\	🗊 🚩	മ ≡
¢	Most Visited 🛭 👘 Microsoft T	eams 😾 Yah	noo 🍈 CBC 🎍 OLG 🌞 Weather 🛛	🞖 Queen's U 🦧 LBC 🛛 🧇 Swagbucks 🛛	Ƴ SNOLAB ⊕ Canada411	🕀 VNC Canberra	🕀 VNC HPGe 🛛 🗛 V	Well 🛅 Linkedin	🙂 Dropbox	🥑 Mozilla	질 Suse Linu	их ≫
	name: Copper	ç	grouping: ILIAS UKDM	published	U-238: 0.005 ppb Th	1-232 : 0.004 ppb	Rb : 2.6 ppb K	- 40 : 0.01 ppm				
	database id:	60b4f3eca	ae890f84b01b2cbf									
	grouping:	ILIAS UK	MC									
	data reference (publication	n): ILIAS Data	abase http://radiopurity.in2p3.fr/									
	sample info											
		name:	Copper									
		id:	ILIAS UKDM #82									
		description	Copper									
	measurement info											
		technique:	GD-MS									
		description:	Used in brazing 2 kg Nal cooled cast	le assembly. Rb 2.6 ppb								
		values:	U-238 < 0.005 ppb									
			Th-232 < 0.004 ppb									
			Rb = 2.6 ppb									
			K-40 < 0.01 ppm									
	measurement practitioner											
		name:	Charles Evans/Cascade Scientific									
	data input											
		name:	Ben Wise / James Loach									
		contact:	bwise@smu.edu / james.loach@gma	ill.com								
												_
I	name: Copper, screens,	support ç	grouping: EDELWEISS (2011)	published	Ra-226 : 0.016 mBq/kg 0.018 mBq/kg	g Th-228 : 0.012 r	mBq/kg K-40 : (0.11 mBq/kg C	o-60:			
	name: Copper, CuC2, di bars, 10mK chamber	sks, ç	grouping: EDELWEISS (2011)	published	Ra-226: 1 mBq/kg Tl Pb-180: 180 mBq/kg	h-228 : 0.7 mBq/kg) Со-60 : 1 mBc	I/kg K-40 : 110	mBq/kg			

June 21, 2023

Summary

- There are many different techniques to measure radioactive backgrounds.
- The technique can depend on several factors:
 - upon its size,
 - whether or not the sample itself is to be used in the experiment
 - can the sample be sacrificed, etc...
- Sometimes a sample can be counted using multiple methods
 - Ge spectrometry to measure the sample bulk
 - α spectrometry to measure the sample surface
- SNOLAB is embarking on a program to better understand the underground background environment.
- Background database requires greater involvement with the community to include data from a much larger set of experiments.

SNOLAB Low Background Team

- SNOLAB, Sudbury
 - L. Anselmo, D. Chauhan, B. Cleveland, J. Farine, N. Fatemighomi, J. Hall, I. Lawson, S. Luoma, T. Sonley and Students
- CTBT radionuclide laboratory CAL05 Dual CTBT Detector
 - Health Canada
 - Adrian Botti, Pawel Mekarski, Marc Bean, Colin Vant and Kurt Ungar
- UNAM group
 - Institute of Physics, UNAM, Mexico Background Gamma and Neutron Measurements
 - Lead: Eric Vázquez-Jáuregui
- University of Michigan Vibration Studies
 - Bjoern Penning and Sam Venetianer